人教版六年级下册数学微课视频及练习3.1.3 圆柱的体积
点击上方蓝字关注中小学学习站,可每天获取免费课程!
课后作业
第5课时 圆柱的体积
1.填空题。
(1)为了推导圆柱的体积,我们可以将圆柱转化为( ),转化后立体图形的底面积等于圆柱的( ),它的高等于圆柱的( ),它的体积等于圆柱的( )。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。
(2)一个圆柱的底面积是12平方厘米,高是2.5厘米,这个圆柱的体积是( )立方厘米。
3.有20根底面半径是6厘米、长是2米的圆木。这些圆木的体积一共是多少立方米?
先
思
考
再
看
答
案
答案:
1.(1)长方体 底面积 高 体积 底面积 高 底面积 高 (2)30
2.282.6立方厘米 401.92立方厘米 125.6立方厘米
3.6厘米=0.06米
3.14×0.062×2×20=0.45216(立方米)
教学设计
圆柱的体积
教材第25~27页。
1. 理解圆柱体积公式的推导过程,掌握计算公式。
2. 会运用公式计算圆柱的体积,提高学生知识迁移的能力。
3. 在公式推导中渗透转化的思想。
重点:理解圆柱的体积公式的推导过程。
难点:圆柱体积的计算。
1. 教师提问。
(1)什么叫物体的体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2. 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)
1. 教学例5。
讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)
②通过刚才的实验你发现了什么?
A.拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。
B.拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。
C.这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。
(4)学生根据圆的面积公式的推导过程,进行猜想。
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)通过以上的观察,启发学生说出发现了什么。
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
③用字母表示圆柱的体积公式。(板书:V=Sh)
2. 教学例6。
出示教材第26页例6。
(1)学生读题,理解题意。
(2)教师:要知道能否装下这袋奶,首先要计算出什么?
学生:杯子的容积。
(3)指明要计算杯子的容积,学生在练习本上完成。
杯子的底面积:3.14×(8÷2)2=50.24(cm2)
杯子的容积:50.24×10=502.4(mL)
答:因为502.4大于498,所以杯子能装下这袋牛奶。
3. 教学例7。
师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)
生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。
生2:我们可以先转化成圆柱,再计算瓶子的容积。
师:怎样转化呢?说说你的想法。
学生可能会说:
•瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。
•也就是把瓶子的容积转化成了两个圆柱的体积。
……
师:尝试自己解答一下。
学生尝试解答;教师巡视了解情况。
组织学生交流汇报:
瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(mL)
答:这个瓶子的容积是1256mL。
只要学生解答正确就要给予肯定,不强求算法一致。
【设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】
师:在本节课的学习中,你有哪些收获?
学生可能会说:
•利用“转化”可以帮助我们解决问题。
•我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。
•在五年级时,计算梨的体积也是用了转化的方法。
……
【设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】
板书设计
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V=
教材习题参考答案
第25页“做一做”
1. 75×90=6750(cm3)
2. 3.14×(1÷2)2×10=7.85(m3)
第26页“做一做”
1. 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.7536<1 不够。
2. 3.14×(0.4÷2)2×5÷0.02≈31(张)
第27页“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL
第28页“练习五”
1. 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2. 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL
3. 3.14×(3÷2)2×0.5×2=7.065(m3)
4. 80÷16=5(cm)
5. 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨
6. 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
体积:3.14×(6÷2)2×12=339.12(cm3)
表面积:(20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)
表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
体积:3.14×(14÷2)2×5=769.3(cm3)
7. 25cm=0.25m 35-3.14×(2÷2)2×0.25=34.215(立方米)
8. 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL
932.58>800 不够
9. 81÷4.5×3=54(dm3)
10. 3.14×(10÷2)2×2=157(cm3)
11. 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.1304>1 能装满。
12. 3.14×(10÷2)2×80-3.14×(8÷2)2×80=2260.8(cm3)
13. 30×10×4÷6=200(cm3)=200(mL)
14*. 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15*. 第四个圆柱的体积最小;第一个圆柱的体积最大。
发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。