其他
Pandas 必知必会的使用技巧,值得收藏!
(给数据分析与开发加星标,提升数据技能)
来源:风控猎人
Pandas技巧总结
1.计算变量缺失率
def missing_cal(df):
"""
df :数据集
return:每个变量的缺失率
"""
missing_series = df.isnull().sum()/df.shape[0]
missing_df = pd.DataFrame(missing_series).reset_index()
missing_df = missing_df.rename(columns={'index':'col',
0:'missing_pct'})
missing_df = missing_df.sort_values('missing_pct',ascending=False).reset_index(drop=True)
return missing_df
missing_cal(df)
如果需要计算样本的缺失率分布,只要加上参数axis=1
2.获取分组里最大值所在的行方法
分为分组中有重复值和无重复值两种。无重复值的情况。df
df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())]
df[df["rank"] == 1][["ID", "class"]]
对ID进行分组之后再对分数应用rank函数,分数相同的情况会赋予相同的排名,然后取出排名为1的数据。
3.多列合并为一行
df.groupby(['v_id']).agg({'pred_class': [', '.join],'pred': lambda x: list(x),
'id_part': 'first'}).reset_index()
4.删除包含特定字符串所在的行
df[df['b'].str.contains('exp')]
5.组内排序
df.groupby('name').apply(lambda x: x.sort_values('score', ascending=False)).reset_index(drop=True)
6.选择特定类型的列
# 选择所有数值型的列
drinks.select_dtypes(include=['number']).head()
# 选择所有字符型的列
drinks.select_dtypes(include=['object']).head()
drinks.select_dtypes(include=['number','object','category','datetime']).head()
# 用 exclude 关键字排除指定的数据类型
drinks.select_dtypes(exclude=['number']).head()
7.字符串转换为数值
'列2':['4.4','5.5','6.6'],
'列3':['7.7','8.8','-']})
df
df.astype({'列1':'float','列2':'float'}).dtypes
8.优化 DataFrame 对内存的占用
方法一:只读取切实所需的列,使用usecols参数
small_drinks = pd.read_csv('data/drinks.csv', usecols=cols)
smaller_drinks = pd.read_csv('data/drinks.csv',usecols=cols, dtype=dtypes)
9.根据最大的类别筛选 DataFrame
counts = movies.genre.value_counts()
movies[movies.genre.isin(counts.nlargest(3).index)].head()
10.把字符串分割为多列
'所在地':['北京-东城区','上海-黄浦区','广州-白云区']})
df
df.姓名.str.split(' ', expand=True)
11.把 Series 里的列表转换为 DataFrame
df
df_new = df.列2.apply(pd.Series)
pd.concat([df,df_new], axis='columns')
12.用多个函数聚合
orders.groupby('order_id').item_price.agg(['sum','count']).head()
13.分组聚合
df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],
'key2':['one', 'two', 'one', 'two', 'one'],
'data1':np.random.randn(5),
'data2':np.random.randn(5)})
df
for name, group in df.groupby('key1'):
print(name)
print(group)
dict(list(df.groupby('key1')))
columns=['a', 'b', 'c', 'd', 'e'],
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
mapping = {'a':'red', 'b':'red', 'c':'blue',
'd':'blue', 'e':'red', 'f':'orange'}
by_column = people.groupby(mapping, axis=1)
by_column.sum()
- EOF -
看完本文有收获?请转发分享给更多人
推荐关注「数据分析与开发」,提升数据技能
点赞和在看就是最大的支持❤️