查看原文
其他

好习惯!pandas 8 个常用的 index 设置

The following article is from Python数据科学 Author 东哥起飞

在数据处理时,经常会因为index报错而发愁。不要紧,本次来和大家聊聊pandas中处理索引的几种常用方法。

1.读取时指定索引列

很多情况下,我们的数据源是 CSV 文件。假设有一个名为的文件data.csv,包含以下数据。

date,temperature,humidity
07/01/21,95,50
07/02/21,94,55
07/03/21,94,56

默认情况下,pandas将会创建一个从0开始的索引行,如下:

>>> pd.read_csv("data.csv", parse_dates=["date"])
        date  temperature  humidity
0 2021-07-01           95        50
1 2021-07-02           94        55
2 2021-07-03           94        56

但是,我们可以在导入过程中通过将index_col参数设置为某一列可以直接指定索引列。

>>> pd.read_csv("data.csv", parse_dates=["date"], index_col="date")
            temperature  humidity
date                             
2021-07-01           95        50
2021-07-02           94        55
2021-07-03           94        56

2. 使用现有的 DataFrame 设置索引

当然,如果已经读取数据或做完一些数据处理步骤后,我们可以通过set_index手动设置索引。

>>> df = pd.read_csv("data.csv", parse_dates=["date"])
>>> df.set_index("date")
            temperature  humidity
date                             
2021-07-01           95        50
2021-07-02           94        55
2021-07-03           94        56

这里有两点需要注意下。

  1. set_index方法默认将创建一个新的 DataFrame。如果要就地更改df的索引,需要设置inplace=True
df.set_index(“date”, inplace=True)
  1. 如果要保留将要被设置为索引的列,可以设置drop=False
df.set_index(“date”, drop=False)

3. 一些操作后重置索引

在处理 DataFrame 时,某些操作(例如删除行、索引选择等)将会生成原始索引的子集,这样默认的数字索引排序就乱了。如要重新生成连续索引,可以使用reset_index方法。

>>> df0 = pd.DataFrame(np.random.rand(5, 3), columns=list("ABC"))
>>> df0
          A         B         C
0  0.548012  0.288583  0.734276
1  0.342895  0.207917  0.995485
2  0.378794  0.160913  0.971951
3  0.039738  0.008414  0.226510
4  0.581093  0.750331  0.133022
>>> df1 = df0[df0.index % 2 == 0]
>>> df1
          A         B         C
0  0.548012  0.288583  0.734276
2  0.378794  0.160913  0.971951
4  0.581093  0.750331  0.133022
>>> df1.reset_index(drop=True)
          A         B         C
0  0.548012  0.288583  0.734276
1  0.378794  0.160913  0.971951
2  0.581093  0.750331  0.133022

通常,我们是不需要保留旧索引的,因此可将drop参数设置为True。同样,如果要就地重置索引,可设置inplace参数为True,否则将创建一个新的 DataFrame。

4. 将索引从 groupby 操作转换为列

groupby分组方法是经常用的。比如下面通过添加一个分组列team来进行分组。

>>> df0["team"] = ["X""X""Y""Y""Y"]
>>> df0
          A         B         C team
0  0.548012  0.288583  0.734276    X
1  0.342895  0.207917  0.995485    X
2  0.378794  0.160913  0.971951    Y
3  0.039738  0.008414  0.226510    Y
4  0.581093  0.750331  0.133022    Y
>>> df0.groupby("team").mean()
             A         B         C
team                              
X     0.445453  0.248250  0.864881
Y     0.333208  0.306553  0.443828

默认情况下,分组会将分组列编程index索引。但是很多情况下,我们不希望分组列变成索引,因为可能有些计算或者判断逻辑还是需要用到该列的。因此,我们需要设置一下让分组列不成为索引,同时也能完成分组的功能。

有两种方法可以完成所需的操作,第一种是用reset_index,第二种是在groupby方法里设置as_index=False。个人更喜欢第二种方法,它只涉及两个步骤,更简洁。

>>> df0.groupby("team").mean().reset_index()
  team         A         B         C
0    X  0.445453  0.248250  0.864881
1    Y  0.333208  0.306553  0.443828
>>> df0.groupby("team", as_index=False).mean()
  team         A         B         C
0    X  0.445453  0.248250  0.864881
1    Y  0.333208  0.306553  0.443828

5.排序后重置索引

当用sort_value排序方法时也会遇到这个问题,因为默认情况下,索引index跟着排序顺序而变动,所以是乱雪。如果我们希望索引不跟着排序变动,同样需要在sort_values方法中设置一下参数ignore_index即可。

>>> df0.sort_values("A")
          A         B         C team
3  0.039738  0.008414  0.226510    Y
1  0.342895  0.207917  0.995485    X
2  0.378794  0.160913  0.971951    Y
0  0.548012  0.288583  0.734276    X
4  0.581093  0.750331  0.133022    Y
>>> df0.sort_values("A", ignore_index=True)
          A         B         C team
0  0.039738  0.008414  0.226510    Y
1  0.342895  0.207917  0.995485    X
2  0.378794  0.160913  0.971951    Y
3  0.548012  0.288583  0.734276    X
4  0.581093  0.750331  0.133022    Y

6.删除重复后重置索引

删除重复项和排序一样,默认执行后也会打乱排序顺序。同理,可以在drop_duplicates方法中设置ignore_index参数True即可。

>>> df0
          A         B         C team
0  0.548012  0.288583  0.734276    X
1  0.342895  0.207917  0.995485    X
2  0.378794  0.160913  0.971951    Y
3  0.039738  0.008414  0.226510    Y
4  0.581093  0.750331  0.133022    Y
>>> df0.drop_duplicates("team", ignore_index=True)
          A         B         C team
0  0.548012  0.288583  0.734276    X
1  0.378794  0.160913  0.971951    Y

7. 索引的直接赋值

当我们有了一个 DataFrame 时,想要使用不同的数据源或单独的操作来分配索引。在这种情况下,可以直接将索引分配给现有的 df.index

>>> better_index = ["X1""X2""Y1""Y2""Y3"]
>>> df0.index = better_index
>>> df0
           A         B         C team
X1  0.548012  0.288583  0.734276    X
X2  0.342895  0.207917  0.995485    X
Y1  0.378794  0.160913  0.971951    Y
Y2  0.039738  0.008414  0.226510    Y
Y3  0.581093  0.750331  0.133022    Y

8.写入CSV文件时忽略索引

数据导出到 CSV 文件时,默认 DataFrame 具有从 0 开始的索引。如果我们不想在导出的 CSV 文件中包含它,可以在to_csv方法中设置index参数。

>>> df0.to_csv("exported_file.csv", index=False)

如下所示,导出的 CSV 文件中,索引列未包含在文件中。

图片

其实,很多方法中都有关于索引的设置,只不过大家一般比较关心数据,而经常忽略了索引,才导致继续运行时可能会报错。以上几个高频的操作都是有索引设置的,建议大家平时用的时候养成设置索引的习惯,这样会节省不少时间。

参考:https://towardsdatascience.com/8-quick-tips-on-manipulating-index-with-pandas-c10ef9d1b44f

- EOF -


推荐阅读  点击标题可跳转

1、pandas 1.3 版本主要更新内容一览

2、五种 Pandas 图表美化样式汇总

3、强烈推荐!8个让 pandas 更高效的 option 设置


看完本文有收获?请转发分享给更多人

推荐关注「数据分析与开发」,提升数据技能

点赞和在看就是最大的支持❤️

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存