查看原文
其他

数据库的锁,到底锁的是什么?

The following article is from Hollis Author Hollis

在MySQL数据库中,为了解决并发问题,引入了很多的锁机制,很多时候,数据库的锁是在有数据库操作的过程中自动添加的。
所以,这就导致很多程序员经常会忽略数据库的锁机制的真正的原理。比如,经常在面试中会问候选人,你知道MySQL Innodb的锁,到底锁的是什么吗?
关于这个问题的回答,听到过很多种,但是很少有人可以把他回答的很完美。因为想要回答好这个问题,需要对数据库的隔离级别、索引等都有一定的了解才行。
MySQL Innodb的锁的相关介绍,在MySQL的官方文档(https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-insert-intention-locks )中有一定的介绍,本文的介绍也是基于这篇官方文档的。



Record Lock

Record Lock,翻译成记录锁,是加在索引记录上的锁。例如,SELECT c1 FROM t WHERE c1 = 10 For UPDATE;会对c1=10这条记录加锁,为了防止任何其他事务插入、更新或删除c1值为10的行。

需要特别注意的是,记录锁锁定的是索引记录。即使表没有定义索引,InnoDB也会创建一个隐藏的聚集索引,并使用这个索引来锁定记录。


Gap Lock

Gap Lock,翻译成间隙锁,他指的是在索引记录之间的间隙上的锁,或者在第一个索引记录之前或最后一个索引记录之后的间隙上的锁。
那么,这里所谓的Gap(间隙)又怎么理解呢?
Gap指的是InnoDB的索引数据结构中可以插入新值的位置。
当你用语句SELECT…FOR UPDATE锁定一组行时。InnoDB可以创建锁,应用于索引中的实际值以及他们之间的间隙。例如,如果选择所有大于10的值进行更新,间隙锁将阻止另一个事务插入大于10的新值。

既然是锁,那么就可能会影响到数据库的并发性,所以,间隙锁只有在Repeatable Reads这种隔离级别中才会起作用。

在Repeatable Reads这种隔离下,对于锁定的读操作(select … for update 、 lock in share mode)、update操作、delete操作时,会进行如下的加锁:
  • 对于具有唯一搜索条件的唯一索引,InnoDB只锁定找到的索引记录,而不会锁定间隙。
  • 对于其他搜索条件,InnoDB锁定扫描的索引范围,使用gap lock或next-key lock来阻塞其他事务插入范围覆盖的间隙。
也就是说,对于SELECT FOR UPDATE、LOCK IN SHARE MODE、UPDATE和DELETE等语句处理时,除了对唯一索引的唯一搜索外都会获取gap锁或next-key锁,即锁住其扫描的范围。



Next-Key Lock

Next-Key锁是索引记录上的记录锁和索引记录之前间隙上的间隙锁的组合。

假设一个索引包含值10、11、13和20。此索引可能的next-key锁包括以下区间:

(-∞, 10]

(10, 11]

(11, 13]

(13, 20]

(20, ∞ ]

对于最后一个间隙,∞不是一个真正的索引记录,因此,实际上,这个next-key锁只锁定最大索引值之后的间隙。
所以,Next-Key 的锁的范围都是左开右闭的。
Next-Key Lock和Gap Lock一样,只有在InnoDB的RR隔离级别中才会生效。



Repeatable Reads能解决幻读

很多人看过网上的关于数据库事务级别的介绍,会认为MySQL中Repeatable Reads能解决不可重复读的问题,但是不能解决幻读,只有Serializable才能解决。但其实,这种想法是不对的。
因为MySQL跟标准RR不一样,标准的Repeatable Reads确实存在幻读问题,但InnoDB中的Repeatable Reads是通过next-key lock解决了RR的幻读问题的
因为我们知道,因为有了next-key lock,所以在需要加行锁的时候,会同时在索引的间隙中加锁,这就使得其他事务无法在这些间隙中插入记录,这就解决了幻读的问题。
关于这个问题,引起过广泛的讨论,可以参考:https://github.com/Yhzhtk/note/issues/42 ,这里有很多大神发表过自己的看法。



MySQL的加锁原则

前面介绍过了Record Lock、Gap Lock和Next-Key Lock,但是并没有说明加锁规则。关于加锁规则,我是看了丁奇大佬的《MySQL实战45讲》中的文章之后理解的,他总结的加锁规则里面,包含了两个“原则”、两个“优化”和一个“bug”:
原则 1:加锁的基本单位是 next-key lock。是一个前开后闭区间。原则 2:查找过程中访问到的对象才会加锁。优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。
假如,数据库表中当前有以下记录:

当我们执行update t set d=d+1 where id = 7的时候,由于表 t 中没有 id=7 的记录,所以:

  • 根据原则 1,加锁单位是 next-key lock,session A 加锁范围就是 (5,10];
  • 根据优化 2,这是一个等值查询 (id=7),而 id=10 不满足查询条件,next-key lock 退化成间隙锁,因此最终加锁的范围是 (5,10)。
当我们执行select * from t where id>=10 and id<11 for update的时候:
  • 根据原则 1,加锁单位是 next-key lock,会给 (5,10]加上 next-key lock,范围查找就往后继续找,找到 id=15 这一行停下来
  • 根据优化 1,主键 id 上的等值条件,退化成行锁,只加了 id=10 这一行的行锁。
  • 根据原则 2,访问到的都要加锁,因此需要加 next-key lock(10,15]。因此最终加的是行锁 id=10 和 next-key lock(10,15]。
当我们执行select * from t where id>10 and id<=15 for update的时候:* 根据原则 1,加锁单位是 next-key lock,会给 (10,15]加上 next-key lock,并且因为 id 是唯一键,所以循环判断到 id=15 这一行就应该停止了。* 但是,InnoDB 会往前扫描到第一个不满足条件的行为止,也就是 id=20。而且由于这是个范围扫描,因此索引 id 上的 (15,20]这个 next-key lock 也会被锁上。
假如,数据库表中当前有以下记录:

当我们执行select id from t where c=5 lock in share mode的时候:

  • 根据原则 1,加锁单位是 next-key lock,因此会给 (0,5]加上 next-key lock。要注意 c 是普通索引,因此仅访问 c=5 这一条记录是不能马上停下来的,需要向右遍历,查到 c=10 才放弃。
  • 根据原则 2,访问到的都要加锁,因此要给 (5,10]加 next-key lock。
  • 根据优化 2:等值判断,向右遍历,最后一个值不满足 c=5 这个等值条件,因此退化成间隙锁 (5,10)。
  • 根据原则 2 ,只有访问到的对象才会加锁,这个查询使用覆盖索引,并不需要访问主键索引,所以主键索引上没有加任何锁。
当我们执行select * from t where c>=10 and c<11 for update的时候:
  • 根据原则 1,加锁单位是 next-key lock,会给 (5,10]加上 next-key lock,范围查找就往后继续找,找到 id=15 这一行停下来
  • 根据原则 2,访问到的都要加锁,因此需要加 next-key lock(10,15]。
  • 由于索引 c 是非唯一索引,没有优化规则,也就是说不会蜕变为行锁,因此最终 sesion A 加的锁是,索引 c 上的 (5,10] 和 (10,15] 这两个 next-key lock。



总结

以上,我们介绍了InnoDB中的锁机制,一共有三种锁,分别是Record Lock、Gap Lock和Next-Key Lock。
Record Lock表示记录锁,锁的是索引记录。Gap Lock是间隙锁,说的是索引记录之间的间隙。Next-Key Lock是Record Lock和Gap Lock的组合,同时锁索引记录和间隙。他的范围是左开右闭的。
InnoDB的RR级别中,加锁的基本单位是 next-key lock,只要扫描到的数据都会加锁。唯一索引上的范围查询会访问到不满足条件的第一个值为止。
同时,为了提升性能和并发度,也有两个优化点:
  • 索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
  • 索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
关于锁的介绍,就是这么多了,但是其实,RR的隔离级别引入的这些锁,虽然一定程度上可解决很多如幻读这样的问题,但是也会带来一些副作用,比如并发度降低、容易导致死锁等。

- EOF -


推荐阅读  点击标题可跳转

1、万字长文说透分布式锁

2、Redis 分布式锁,你用对了吗?

3、MySQL join 学习


看完本文有收获?请转发分享给更多人

推荐关注「数据分析与开发」,提升数据技能

点赞和在看就是最大的支持❤️

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存