查看原文
其他

用 Python 算法预测客户行为案例!

推荐关注↓

作者:ChangingWudake

https://blog.csdn.net/qq_33333002/article/details/106280462

这是一份kaggle上的银行的数据集,研究该数据集可以预测客户是否认购定期存款y。这里包含20个特征。

1. 分析框架

2. 数据读取,数据清洗

# 导入相关包
import numpy as np
import pandas as pd 
# 读取数据
data = pd.read_csv('./1bank-additional-full.csv')
# 查看表的行列数
data.shape

输出:

这里只有nr.employed这列有丢失数据,查看下:

data['nr.employed'].value_counts()

这里只有5191.0这个值,没有其他的,且只有7763条数据,这里直接将这列当做异常值,直接将这列直接删除了。

# data.drop('nr.employed', axis=1, inplace=True)

3. 探索性数据分析

3.1查看各年龄段的人数的分布

这里可以看出该银行的主要用户主要集中在23-60岁这个年龄层,其中29-39这个年龄段的人数相对其他年龄段多。

import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.figure(figsize=(20, 8), dpi=256)
sns.countplot(x='age', data=data)
plt.title("各年龄段的人数")

3.2 其他特征的一些分布

plt.figure(figsize=(18, 16), dpi=512)
plt.subplot(221)
sns.countplot(x='contact', data=data)
plt.title("contact分布情况")

plt.subplot(222)
sns.countplot(x='day_of_week', data=data)
plt.title("day_of_week分布情况")

plt.subplot(223)
sns.countplot(x='default', data=data)
plt.title("default分布情况")

plt.subplot(224)
sns.countplot(x='education', data=data)
plt.xticks(rotation=70)
plt.title("education分布情况")

plt.savefig('./1.png')
plt.figure(figsize=(18, 16), dpi=512)
plt.subplot(221)
sns.countplot(x='housing', data=data)
plt.title("housing分布情况")

plt.subplot(222)
sns.countplot(x='job', data=data)
plt.xticks(rotation=70)
plt.title("job分布情况")

plt.subplot(223)
sns.countplot(x='loan', data=data)
plt.title("loan分布情况")

plt.subplot(224)
sns.countplot(x='marital', data=data)
plt.xticks(rotation=70)
plt.title("marital分布情况")

plt.savefig('./2.png')
plt.figure(figsize=(18, 8), dpi=512)
plt.subplot(221)
sns.countplot(x='month', data=data)
plt.xticks(rotation=30)

plt.subplot(222)
sns.countplot(x='poutcome', data=data)
plt.xticks(rotation=30)
plt.savefig('./3.png')

3.3 各特征的相关性

plt.figure(figsize=(10, 8), dpi=256)
plt.rcParams['axes.unicode_minus'] = False
sns.heatmap(data.corr(), annot=True)
plt.savefig('./4.png')

4. 特征规范化

4.1 将自变量的特征值转换成标签类型

# 特征化数据
from sklearn.preprocessing import LabelEncoder
features = ['contact''day_of_week''default''education''housing',          
           'job','loan''marital''month''poutcome']
           
le_x = LabelEncoder()
for feature in features:   
    data[feature] = le_x.fit_transform(data[feature]) 

4.2 将结果y值转换成0、1

def parse_y(x):   
    if (x == 'no'):     
        return 0   
    else:    
        return 1
data['y'] = data['y'].apply(parse_y)
data['y'] = data['y'].astype(int)

4.3 数据规范化

# 数据规范化到正态分布的数据
# 测试数据和训练数据的分割
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
ss = StandardScaler()
train_x, test_x, train_y, test_y = train_test_split(data.iloc[:,:-1],                                                   
                                                    data['y'],                                                   
                                                    test_size=0.3)
train_x = ss.fit_transform(train_x)
test_x = ss.transform(test_x)

5. 模型训练

5.1 AdaBoost分类器

from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score
ada = AdaBoostClassifier()
ada.fit(train_x, train_y)
predict_y = ada.predict(test_x)
print("准确率:", accuracy_score(test_y, predict_y))

5.2 SVC分类器

from sklearn.svm import SVC
svc = SVC()
svc.fit(train_x, train_y)
predict_y = svc.predict(test_x)
print("准确率:", accuracy_score(test_y, predict_y))

5.3 K邻近值分类器

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(train_x, train_y)
predict_y = knn.predict(test_x)
print("准确率:", accuracy_score(test_y, predict_y))

5.4 决策树分类器

from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(train_x, train_y)
predict_y = dtc.predict(test_x)
print("准确率:", accuracy_score(test_y, predict_y))

6 模型评价

6.1 AdaBoost分类器

from sklearn.metrics import roc_curve
from sklearn.metrics import auc
plt.figure(figsize=(8,6))
fpr1, tpr1, threshoulds1 = roc_curve(test_y, ada.predict(test_x))
plt.stackplot(fpr1, tpr1,color='steelblue', alpha = 0.5, edgecolor = 'black')
plt.plot(fpr1, tpr1, linewidth=2, color='black')
plt.plot([0,1], [0,1], ls='-', color='red')
plt.text(0.5, 0.4, auc(fpr1, tpr1))
plt.title('AdaBoost分类器的ROC曲线')

6.2 SVC分类器

plt.figure(figsize=(8,6))
fpr2, tpr2, threshoulds2 = roc_curve(test_y, svc.predict(test_x))
plt.stackplot(fpr2, tpr2, alpha = 0.5)
plt.plot(fpr2, tpr2, linewidth=2, color='black')
plt.plot([0,1], [0,1],ls='-', color='red')
plt.text(0.5, 0.4, auc(fpr2, tpr2))
plt.title('SVD的ROC曲线')

6.3 K邻近值分类器

plt.figure(figsize=(8,6))
fpr3, tpr3, threshoulds3 = roc_curve(test_y, knn.predict(test_x))
plt.stackplot(fpr3, tpr3, alpha = 0.5)
plt.plot(fpr3, tpr3, linewidth=2, color='black')
plt.plot([0,1], [0,1],ls='-', color='red')
plt.text(0.5, 0.4, auc(fpr3, tpr3))
plt.title('K邻近值的ROC曲线')

6.4 决策树分类器

plt.figure(figsize=(8,6))
fpr4, tpr4, threshoulds4 = roc_curve(test_y, dtc.predict(test_x))
plt.stackplot(fpr4, tpr4, alpha = 0.5)
plt.plot(fpr4, tpr4, linewidth=2, color='black')
plt.plot([0,1], [0,1],ls='-', color='red')
plt.text(0.5, 0.4, auc(fpr4, tpr4))
plt.title('决策树的ROC曲线')


- EOF -


加主页君微信,不仅数据分析和开发技能+1

主页君日常还会在个人微信分享数据分析和开发相关工具资源精选技术文章,不定期分享一些有意思的活动岗位内推以及如何用技术做业余项目

加个微信,打开一扇窗



推荐阅读  点击标题可跳转

1、Python 数据可视化的 3 大步骤,你知道吗?

2、Apriori 关联规则算法(Python代码)

3、这 4 款数据自动化探索 Python 神器,解决 99% 的数据分析问题!


看完本文有收获?请转发分享给更多人

推荐关注「数据分析与开发」,提升数据技能

点赞和在看就是最大的支持❤️

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存