查看原文
其他

这几种神级性能优化手段,你用过几个?

推荐关注↓

来源:https://code2life.top/2020/08/15/0055-performance/

引言:取与舍

软件设计开发某种意义上是“取”与“舍”的艺术。关于性能方面,就像建筑设计成抗震9度需要额外的成本一样,高性能软件系统也意味着更高的实现成本,有时候与其他质量属性甚至会冲突,比如安全性、可扩展性、可观测性等等。

大部分时候我们需要的是:在业务遇到瓶颈之前,利用常见的技术手段将系统优化到预期水平。那么,性能优化有哪些技术方向和手段呢

性能优化通常是“时间”与“空间”的互换与取舍。本篇讲解六种通用的“时间”与“空间”互换取舍的手段:

  • 索引术
  • 压缩术
  • 缓存术
  • 预取术
  • 削峰填谷术
  • 批量处理术

每种性能优化的技术手段,我都找了一张应景的《火影忍者》中人物或忍术的配图,评论区答出任意人物或忍术送一颗小星星。

(注:所有配图来自动漫《火影忍者》,部分图片添加了文字方便理解,仅作技术交流用途)

索引术

10ms之后。

索引的原理是拿额外的存储空间换取查询时间,增加了写入数据的开销,但使读取数据的时间复杂度一般从O(n)降低到O(logn)甚至O(1)。索引不仅在数据库中广泛使用,前后端的开发中也在不知不觉运用。

在数据集比较大时,不用索引就像从一本没有目录而且内容乱序的新华字典查一个字,得一页一页全翻一遍才能找到;用索引之后,就像用拼音先在目录中先找到要查到字在哪一页,直接翻过去就行了。书籍的目录是典型的树状结构,那么软件世界常见的索引有哪些数据结构,分别在什么场景使用呢?

  • 哈希表(Hash Table):哈希表的原理可以类比银行办业务取号,给每个人一个号(计算出的Hash值),叫某个号直接对应了某个人,索引效率是最高的O(1),消耗的存储空间也相对更大。K-V存储组件以及各种编程语言提供的Map/Dict等数据结构,多数底层实现是用的哈希表。
  • 二叉搜索树(Binary Search Tree):有序存储的二叉树结构,在编程语言中广泛使用的红黑树[1]属于二叉搜索树,确切的说是“不完全平衡的”二叉搜索树。从C++、Java的TreeSet、TreeMap,到Linux的CPU调度[2],都能看到红黑树的影子。Java的HashMap在发现某个Hash槽的链表长度大于8时也会将链表升级为红黑树,而相比于红黑树“更加平衡”的AVL树反而实际用的更少。
  • 平衡多路搜索树(B-Tree):这里的B指的是Balance而不是Binary,二叉树在大量数据场景会导致查找深度很深,解决办法就是变成多叉树,MongoDB的索引用的就是B-Tree。
  • 叶节点相连的平衡多路搜索树(B+ Tree):B+ Tree是B-Tree的变体,只有叶子节点存数据,叶子与相邻叶子相连,MySQL的索引用的就是B+树,Linux的一些文件系统也使用的B+树索引inode。其实B+树还有一种在枝桠上再加链表的变体:B*树,暂时没想到实际应用。
  • 日志结构合并树(LSM Tree):Log Structured Merge Tree,简单理解就是像日志一样顺序写下去,多层多块的结构,上层写满压缩合并到下层。LSM Tree其实本身是为了优化写性能牺牲读性能的数据结构,并不能算是索引,但在大数据存储和一些NoSQL数据库中用的很广泛,因此这里也列进去了。
  • 字典树(Trie Tree):又叫前缀树,从树根串到树叶就是数据本身,因此树根到枝桠就是前缀,枝桠下面的所有数据都是匹配该前缀的。这种结构能非常方便的做前缀查找或词频统计,典型的应用有:自动补全、URL路由。其变体基数树(Radix Tree)在Nginx的Geo模块处理子网掩码前缀用了;Redis的Stream、Cluster等功能的实现也用到了基数树(Redis中叫Rax)。
  • 跳表(Skip List):是一种多层结构的有序链表,插入一个值时有一定概率“晋升”到上层形成间接的索引。跳表更适合大量并发写的场景,不存在红黑树的再平衡问题,Redis强大的ZSet底层数据结构就是哈希加跳表。
  • 倒排索引(Inverted index):这样翻译不太直观,可以叫“关键词索引”,比如书籍末页列出的术语表就是倒排索引,标识出了每个术语出现在哪些页,这样我们要查某个术语在哪用的,从术语表一查,翻到所在的页数即可。倒排索引在全文索引存储中经常用到,比如ElasticSearch非常核心的机制就是倒排索引;Prometheus的时序数据库按标签查询也是在用倒排索引。

数据库主键之争:自增长 vs UUID。主键是很多数据库非常重要的索引,尤其是MySQL这样的RDBMS会经常面临这个难题:是用自增长的ID还是随机的UUID做主键?

自增长ID的性能最高,但不好做分库分表后的全局唯一ID,自增长的规律可能泄露业务信息;而UUID不具有可读性且太占存储空间。争执的结果就是找一个兼具二者的优点的折衷方案:用雪花算法生成分布式环境全局唯一的ID作为业务表主键,性能尚可、不那么占存储、又能保证全局单调递增,但引入了额外的复杂性,再次体现了取舍之道。

再回到数据库中的索引,建索引要注意哪些点呢?

  • 定义好主键并尽量使用主键,多数数据库中,主键是效率最高的聚簇索引
  • WhereGroup By、Order By、Join On条件中用到的字段也要按需建索引或联合索引,MySQL中搭配explain命令可以查询DML是否利用了索引;
  • 类似枚举值这样重复度太高的字段不适合建索引(如果有位图索引可以建),频繁更新的列不太适合建索引;
  • 单列索引可以根据实际查询的字段升级为联合索引,通过部分冗余达到索引覆盖,以避免回表的开销;
  • 尽量减少索引冗余,比如建A、B、C三个字段的联合索引,Where条件查询A、A and B、A and B and C 都可以利用该联合索引,就无需再给A单独建索引了;
  • 根据数据库特有的索引特性选择适合的方案,比如像MongoDB,还可以建自动删除数据的TTL索引、不索引空值的稀疏索引、地理位置信息的Geo索引等等。

数据库之外,在代码中也能应用索引的思维,比如对于集合中大量数据的查找,使用Set、Map、Tree这样的数据结构,其实也是在用哈希索引或树状索引,比直接遍历列表或数组查找的性能高很多。

缓存术

缓存优化性能的原理和索引一样,是拿额外的存储空间换取查询时间。缓存无处不在,设想一下我们在浏览器打开这篇文章,会有多少层缓存呢?

  • 首先解析DNS时,浏览器一层DNS缓存、操作系统一层DNS缓存、DNS服务器链上层层缓存;
  • 发送一个GET请求这篇文章,服务端很可能早已将其缓存在KV存储组件中了;
  • 即使没有击中缓存,数据库服务器内存中也缓存了最近查询的数据;
  • 即使没有击中数据库服务器的缓存,数据库从索引文件中读取,操作系统已经把热点文件的内容放置在Page Cache中了;
  • 即使没有击中操作系统的文件缓存,直接读取文件,大部分固态硬盘或者磁盘本身也自带缓存;
  • 数据取到之后服务器用模板引擎渲染出HTML,模板引擎早已解析好缓存在服务端内存中了;
  • 历经数十毫秒之后,终于服务器返回了一个渲染后的HTML,浏览器端解析DOM树,发送请求来加载静态资源;
  • 需要加载的静态资源可能因Cache-Control在浏览器本地磁盘和内存中已经缓存了;
  • 即使本地缓存到期,也可能因Etag没变服务器告诉浏览器304 Not Modified继续缓存;
  • 即使Etag变了,静态资源服务器也因其他用户访问过早已将文件缓存在内存中了;
  • 加载的JS文件会丢到JS引擎执行,其中可能涉及的种种缓存就不再展开了;
  • 整个过程中链条上涉及的所有的计算机和网络设备,执行的热点代码和数据很可能会载入CPU的多级高速缓存。

这里列举的仅仅是一部分常见的缓存,就有多种多样的形式:从廉价的磁盘到昂贵的CPU高速缓存,最终目的都是用来换取宝贵的时间。

缓存是“银弹”吗?

不,Phil Karlton 曾说过:

计算机科学中只有两件困难的事情:缓存失效和命名规范。There are only two hard things in Computer Science: cache invalidation and naming things.

缓存的使用除了带来额外的复杂度以外,还面临如何处理缓存失效的问题。

  • 多线程并发编程需要用各种手段(比如Java中的synchronized volatile)防止并发更新数据,一部分原因就是防止线程本地缓存的不一致
  • 缓存失效衍生的问题还有:缓存穿透、缓存击穿、缓存雪崩。解决用不存在的Key来穿透攻击,需要用空值缓存或布隆过滤器;解决单个缓存过期后,瞬间被大量恶意查询击穿的问题需要做查询互斥;解决某个时间点大量缓存同时过期的雪崩问题需要添加随机TTL;
  • 热点数据如果是多级缓存,在发生修改时需要清除或修改各级缓存,这些操作往往不是原子操作,又会涉及各种不一致问题。

除了通常意义上的缓存外,对象重用的池化技术,也可以看作是一种缓存的变体。常见的诸如JVM,V8这类运行时的常量池、数据库连接池、HTTP连接池、线程池、Golang的sync.Pool对象池等等。

在需要某个资源时从现有的池子里直接拿一个,稍作修改或直接用于另外的用途,池化重用也是性能优化常见手段。

压缩术

说完了两个“空间换时间”的,我们再看一个“时间换空间”的办法——压缩。压缩的原理消耗计算的时间,换一种更紧凑的编码方式来表示数据

为什么要拿时间换空间?时间不是最宝贵的资源吗?

举一个视频网站的例子,如果不对视频做任何压缩编码,因为带宽有限,巨大的数据量在网络传输的耗时会比编码压缩的耗时多得多。对数据的压缩虽然消耗了时间来换取更小的空间存储,但更小的存储空间会在另一个维度带来更大的时间收益

这个例子本质上是:“操作系统内核与网络设备处理负担 vs 压缩解压的CPU/GPU负担”的权衡和取舍。

我们在代码中通常用的是无损压缩,比如下面这些场景:

  • HTTP协议中Accept-Encoding添加Gzip/deflate,服务端对接受压缩的文本(JS/CSS/HTML)请求做压缩,大部分图片格式本身已经是压缩的无需压缩;
  • HTTP2协议的头部HPACK压缩;
  • JS/CSS文件的混淆和压缩(Uglify/Minify);
  • 一些RPC协议和消息队列传输的消息中,采用二进制编码和压缩(Gzip、Snappy、LZ4等等);
  • 缓存服务存过大的数据,通常也会事先压缩一下再存,取的时候解压;
  • 一些大文件的存储,或者不常用的历史数据存储,采用更高压缩比的算法存储;
  • JVM的对象指针压缩,JVM在32G以下的堆内存情况下默认开启“UseCompressedOops”,用4个byte就可以表示一个对象的指针,这也是JVM尽量不要把堆内存设置到32G以上的原因;
  • MongoDB的二进制存储的BSON相对于纯文本的JSON也是一种压缩,或者说更紧凑的编码。但更紧凑的编码也意味着更差的可读性,这一点也是需要取舍的。纯文本的JSON比二进制编码要更占存储空间但却是REST API的主流,因为数据交换的场景下的可读性是非常重要的。

信息论告诉我们,无损压缩的极限是信息熵[3]。进一步减小体积只能以损失部分信息为代价,也就是有损压缩

那么,有损压缩有哪些应用呢?

  • 预览和缩略图,低速网络下视频降帧、降清晰度,都是对信息的有损压缩;
  • 音视频等多媒体数据的采样和编码大多是有损的,比如MP3是利用傅里叶变换,有损地存储音频文件;jpeg等图片编码也是有损的。虽然有像WAV/PCM这类无损的音频编码方式,但多媒体数据的采样本身就是有损的,相当于只截取了真实世界的极小一部分数据;
  • 散列化,比如K-V存储时Key过长,先对Key执行一次“傻”系列(SHA-1、SHA-256)哈希算法变成固定长度的短Key。另外,散列化在文件和数据验证(MD5、CRC、HMAC)场景用的也非常多,无需耗费大量算力对比完整的数据。

除了有损/无损压缩,但还有一个办法,就是压缩的极端——从根本上减少数据或彻底删除

能减少的就减少

  • JS打包过程“摇树”,去掉没有使用的文件、函数、变量;
  • 开启HTTP/2和高版本的TLS,减少了Round Trip,节省了TCP连接,自带大量性能优化;
  • 减少不必要的信息,比如Cookie的数量,去掉不必要的HTTP请求头;
  • 更新采用增量更新,比如HTTP的PATCH,只传输变化的属性而不是整条数据;
  • 缩短单行日志的长度、缩短URL、在具有可读性情况下用短的属性名等等;
  • 使用位图和位操作,用风骚的位操作最小化存取的数据。典型的例子有:用Redis的位图来记录统计海量用户登录状态;布隆过滤器用位图排除不可能存在的数据;大量开关型的设置的存储等等。

能删除的就删除

  • 删掉不用的数据;
  • 删掉不用的索引;
  • 删掉不该打的日志;
  • 删掉不必要的通信代码,不去发不必要的HTTP、RPC请求或调用,轮询改发布订阅;
  • 终极方案:砍掉整个功能

No code is the best way to write secure and reliable applications. Write nothing; deploy nowhere. —— Kelsey Hightower

预取术

预取通常搭配缓存一起用,其原理是在缓存空间换时间基础上更进一步,再加上一次“时间换时间”,也就是:用事先预取的耗时,换取第一次加载的时间。当可以猜测出以后的某个时间很有可能会用到某种数据时,把数据预先取到需要用的地方,能大幅度提升用户体验或服务端响应速度。

是否用预取模式就像自助餐餐厅与厨师现做的区别,在自助餐餐厅可以直接拿做好的菜品,一般餐厅需要坐下来等菜品现做。那么,预取在哪些实际场景会用呢?

  • 视频或直播类网站,在播放前先缓冲一小段时间,就是预取数据。有的在播放时不仅预取这一条数据,甚至还会预测下一个要看的其他内容,提前把数据取到本地;
  • HTTP/2 Server Push,在浏览器请求某个资源时,服务器顺带把其他相关的资源一起推回去,HTML/JS/CSS几乎同时到达浏览器端,相当于浏览器被动预取了资源;
  • 一些客户端软件会用常驻进程的形式,提前预取数据或执行一些代码,这样可以极大提高第一次使用的打开速度;
  • 服务端同样也会用一些预热机制,一方面热点数据预取到内存提前形成多级缓存;另一方面也是对运行环境的预热,载入CPU高速缓存、热点函数JIT编译成机器码等等;
  • 热点资源提前预分配到各个实例,比如:秒杀、售票的库存性质的数据;分布式唯一ID等等。

天上不会掉馅饼,预取也是有副作用的。正如烤箱预热需要消耗时间和额外的电费,在软件代码中做预取/预热的副作用通常是启动慢一些、占用一些闲时的计算资源、可能取到的不一定是后面需要的

削峰填谷术

削峰填谷的原理也是“时间换时间”,谷时换峰时。削峰填谷与预取是反过来的:预取是事先花时间做,削峰填谷是事后花时间做。就像三峡大坝可以抗住短期巨量洪水,事后雨停再慢慢开闸防水。软件世界的“削峰填谷”是类似的,只是不是用三峡大坝实现,而是用消息队列、异步化等方式。

常见的有这几类问题,我们分别来看每种对应的解决方案:

  • 针对前端、客户端的启动优化或首屏优化:代码和数据等资源的延时加载、分批加载、后台异步加载、或按需懒加载等等。
  • 背压控制 - 限流、节流、去抖等等。一夫当关,万夫莫开,从入口处削峰,防止一些恶意重复请求以及请求过于频繁的爬虫,甚至是一些DDoS攻击。简单做法有网关层根据单个IP或用户用漏桶控制请求速率和上限;前端做按钮的节流去抖防止重复点击;网络层开启TCP SYN Cookie防止恶意的SYN洪水攻击等等。彻底杜绝爬虫、黑客手段的恶意洪水攻击是很难的,DDoS这类属于网络安全范畴了。
  • 针对正常的业务请求洪峰,用消息队列暂存再异步化处理:常见的后端消息队列Kafka、RocketMQ甚至Redis等等都可以做缓冲层,第一层业务处理直接校验后丢到消息队列中,在洪峰过去后慢慢消费消息队列中的消息,执行具体的业务。另外执行过程中的耗时和耗计算资源的操作,也可以丢到消息队列或数据库中,等到谷时处理。
  • 捋平毛刺:有时候洪峰不一定来自外界,如果系统内部大量定时任务在同一时间执行,或与业务高峰期重合,很容易在监控中看到“毛刺”——短时间负载极高。一般解决方案就是错峰执行定时任务,或者分配到其他非核心业务系统中,把“毛刺”摊平。比如很多数据分析型任务都放在业务低谷期去执行,大量定时任务在创建时尽量加一些随机性来分散执行时间。
  • 避免错误风暴带来的次生洪峰:有时候网络抖动或短暂宕机,业务会出现各种异常或错误。这时处理不好很容易带来次生灾害,比如:很多代码都会做错误重试,不加控制的大量重试甚至会导致网络抖动恢复后的瞬间,积压的大量请求再次冲垮整个系统;还有一些代码没有做超时、降级等处理,可能导致大量的等待耗尽TCP连接,进而导致整个系统被冲垮。解决之道就是做限定次数、间隔指数级增长的Back-Off重试,设定超时、降级策略。

批量处理术

批量处理同样可以看成“时间换时间”,其原理是减少了重复的事情,是一种对执行流程的压缩。以个别批量操作更长的耗时为代价,在整体上换取了更多的时间

批量处理的应用也非常广泛,我们还是从前端开始讲:

  • 打包合并的JS文件、雪碧图等等,将一批资源集中到一起,一次性传输
  • 前端动画使用requestAnimationFrame在UI渲染时批量处理积压的变化,而不是有变化立刻更新,在游戏开发中也有类似的应用;
  • 前后端中使用队列暂存临时产生的数据,积压到一定数量再批量处理;
  • 在不影响可扩展性情况下,一个接口传输多种需要的数据,减少大量ajax调用(GraphQL在这一点就做到了极致);
  • 系统间通信尽量发送整批数据,比如消息队列的发布订阅、存取缓存服务的数据、RPC调用、插入或更新数据库等等,能批量做尽可能批量做,因为这些系统间通信的I/O时间开销已经很昂贵了;
  • 数据积压到一定程度再落盘,操作系统本身的写文件就是这么做的,Linux的fwrite只是写入缓冲区暂存,积压到一定程度再fsync刷盘。在应用层,很多高性能的数据库和K-V存储的实现都体现了这一点:一些NoSQL的LSM Tree的第一层就是在内存中先积压到一定大小再往下层合并;Redis的RDB结合AOF的落盘机制;Linux系统调用也提供了批量读写多个缓冲区文件的系统调用:readv/writev;
  • 延迟地批量回收资源,比如JVM的Survivor Space的S0和S1区互换、Redis的Key过期的清除策略。

批量处理如此好用,那么问题来了,每一批放多大最合适呢

这个问题其实没有定论,有一些个人经验可以分享。

  • 前端把所有文件打包成单个JS,大部分时候并不是最优解。Webpack提供了很多分块的机制,CSS和JS分开、JS按业务分更小的Chunk结合懒加载、一些体积大又不用在首屏用的第三方库设置external或单独分块,可能整体性能更高。不一定要一批搞定所有事情,分几个小批次反而用户体验的性能更好。
  • Redis的MGET、MSET来批量存取数据时,每批大小不宜过大,因为Redis主线程只有一个,如果一批太大执行期间会让其他命令无法响应。经验上一批50-100个Key性能是不错的,但最好在真实环境下用真实大小的数据量化度量一下,做Benchmark测试才能确定一批大小的最优值。
  • MySQL、Oracle这类RDBMS,最优的批量Insert的大小也视数据行的特性而定。我之前在2U8G的Oracle上用一些普遍的业务数据做过测试,批量插入时每批5000-10000条数据性能是最高的,每批过大会导致DML的解析耗时过长,甚至单个SQL语句体积超限,单批太多反而得不偿失。
  • 消息队列的发布订阅,每批的消息长度尽量控制在1MB以内,有些云服务商提供的消息队列限制了最大长度,那这个长度可能就是性能拐点,比如AWS的SQS服务对单条消息的限制是256KB。

总之,多大一批可以确保单批响应时间不太长的同时让整体性能最高,是需要在实际情况下做基准测试的,不能一概而论。而批量处理的副作用在于:处理逻辑会更加复杂,尤其是一些涉及事务、并发的问题;需要用数组或队列用来存放缓冲一批数据,消耗了额外的存储空间。

小结

聊到这里,大都是“时间”与“空间”的取舍之术,这些思路在很多地方甚至是非软件领域都是普适的。

参考资料

[1]

红黑树: https://www.jianshu.com/p/e136ec79235c

[2]

Linux的CPU调度: https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

[3]

信息熵: https://www.ruanyifeng.com/blog/2014/09/information-entropy.html

- EOF -


加主页君微信,不仅数据分析和开发技能+1

主页君日常还会在个人微信分享数据分析和开发相关工具资源精选技术文章,不定期分享一些有意思的活动岗位内推以及如何用技术做业余项目

加个微信,打开一扇窗



推荐阅读  点击标题可跳转

1、70 个必备的数据分析工具,建议收藏!

2、多图深入理解 Redis

3、谷歌正式推出 “密钥登录”,逐步取代传统密码登录


看完本文有收获?请转发分享给更多人

推荐关注「数据分析与开发」,提升数据技能

点赞和在看就是最大的支持❤️

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存