【微课堂】苏教版数学六下:2.1《认识圆柱和圆锥》
教学视频
1
来源:腾讯视频
电子课本
2
知识点
3
第二单元 圆柱和圆锥
知识点一:圆柱、圆锥的认识
相关概念:
①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。
知识点二:圆柱侧面积的计算方法
理解掌握:
圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh
知识点三:圆柱表面积的计算方法
理解掌握:
圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2
用乘法分配率得圆柱的表面积公式 =2πr(h+r)
例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?
解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
解:12.56÷3.14÷2=2(厘米)
2×3.14×2×(12.56+2)=182.8736平方厘米
答:做一个这样的罐头盒需要182.8736平方厘米铁皮。
知识点四:圆柱体积的计算方法
理解掌握:
利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
相关公式:①已知半径和高,V圆柱=πr2h
②已知直径和高,V圆柱=π(d÷2)2h
③已知周长和高,V圆柱=π(C÷2π)2h
难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。
得到的结论:圆柱的底面周长等于长方体的两条长的和;
圆柱的半径等于长方体的宽;
圆柱的高等于长方体的高;
圆柱的体积等于长方体的体积;
★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。
知识点五:圆锥体积的计算方法
理解掌握:
根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。
用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。
相关公式:只需要在圆柱的相关公式前面乘以三分之一。
①已知半径和高,V圆锥=1/3πr2h
②已知直径和高,V圆锥=1/3π(d÷2)2h
③已知周长和高,V圆锥=1/3π(C÷2π)2h
重点解析:
在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。
例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?
解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)h
1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米
1.7×6.28=10.676吨
答:这堆沙子共重10.676吨。
知识点七:圆柱和圆锥的横截面
理解掌握:★圆柱横截面的分割方法:
① 按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。
② 按平行于底面分割,这样分割的横截面是圆。
圆锥横截面的分割方法:
① 按圆锥的高分割,这样分割的横截面是等腰三角形。
② 按平行于底面分割,这样分割的横截面是圆。
练习提升
4
练习1
来源:网络,本公众号只作公益性分享,版权归原作者,如有侵权请联系删除。
请点个在看,谢谢鼓励哦