论著|伴有攻击行为精神分裂症磁共振动态功能连接分析
【引用格式】马洁华,林倩倩,沈志华,等. 伴有攻击行为精神分裂症磁共振动态功能连接分析[J]. 中国神经精神疾病杂志,2022,48(5):347-353.
【Cite this article】MA J H,LIN Q Q,SHEN Z H,et al. Dynamic functional connectivity analysis in resting-state fMRI: an application to schizophrenia patients with aggressive behaviors[J]. Chin J Nervous Mental Dis,2022,48(5):347-353.
DOI:10.3969/j.issn.1002-0152.2022.06.005
伴有攻击行为精神分裂症磁共振动态功能连接分析
马洁华 林倩倩 沈志华 汪永光
杭州市第七人民医院
摘 要目的 借助功能磁共振结合动态功能连接分析方法,探究伴有和不伴有攻击行为的精神分裂症患者动态脑功能连接状态的差异。
方法 招募17例伴有攻击行为的精神分裂症患者、29例不伴有攻击行为精神分裂症患者和26名健康对照,使用修改版外显攻击行为量表(modified overt aggression scale, MOAS)评估患者攻击行为,采集被试静息状态下的功能磁共振成像数据,进行动态功能连接分析,得到4个功能连接状态,提取不同功能连接状态间转换次数进行组间比较。
结果 伴有攻击行为组、不伴有攻击行为组、健康对照组间脑功能连接转换次数的中位数及上下四分位数分别为1.0(0.0,3.0)次、4.0(2.5,4.0)次和2.5(1.0,4.0)次,三组间存在统计学差异(H=14.411,P=0.001),其中伴有攻击行为组低于不伴有攻击行为组(P<0.001),不伴有攻击行为组高于健康对照组(P=0.041)。精神分裂症患者功能连接状态转换次数与MOAS财产攻击评分(r=-0.521,P<0.001)、体力攻击评分(r=-0.421, P=0.004)和MOAS加权总分(r=-0.519, P<0.001)呈负相关。
结论 精神分裂症患者攻击行为可能与其动态脑功能连接异常有关。
关键词
精神分裂症;攻击行为;功能磁共振;静息状态;动态功能连接分析;转换次数;组独立成分分析
攻击行为在精神分裂症患者中较为常见,理解精神分裂症攻击行为的脑机制对于精神分裂症临床干预研究具有显著意义[1 对象与方法
1.1 研究对象 静息态功能磁共振成像所采集的数据属于计量资料,根据样本量计算公式[7],本研究拟纳入精神分裂症患者不少于37例,健康对照不少于21名。收集2020年6月至2020年10月在杭州市第七人民医院住院男性精神分裂症患者为研究对象。入组标准:①经过两位主治以上职称精神科医师诊断,符合《精神障碍诊断与统计手册第5版》(Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, DSM-5)精神分裂症诊断标准;②右利手;③男性。排除标准:①既往有器质性脑损伤、癫痫等神经系统疾病;②既往或现患有其他严重躯体疾病;③有磁共振检查禁忌证。共入组46例男性精神分裂症患者。根据修改版外显攻击行为量表(modified overt aggression scale, MOAS)加权总分[1.2 研究方法
1.2.1 临床评估 采用阳性与阴性症状量表(positive and negative syndrome scale, PANSS)评估精神分裂症患者的精神病性症状,该评分分为阳性症状分、阴性症状分、一般症状分和PANSS量表总分。由同一位经过量表培训的精神科主治医生根据患者此次入院前2周以及入院后3 d内的情况,使用MOAS评估患者攻击行为的严重程度。MOAS分别从言语攻击、财产攻击、自身攻击和体力攻击评估患者攻击行为,计算MOAS量表加权总分,以MOAS加权总分>4分判断伴有攻击行为[2 结果
2.1 一般资料 三组间年龄有统计学差异(H=6.366,P=0.041),其中伴有攻击行为组的年龄有小于健康对照组的趋势,经多重校正后差异无统计学意义(P=0.078),不伴有攻击行为组的年龄与健康对照组无统计学差异(P=0.114)。MOAS中,伴有攻击行为组和不伴有攻击行为组的财产攻击(Z=-3.277,P=0.002)、体力攻击(Z=-5.958,P<0.001)评分有统计学差异。见表1。表1 各组受试者一般资料注:符合正态分布数据以x±s描述,不符合正态分布数据以M(QL,QU)描述,分类变量以例数描述。1)与不伴有攻击行为组比较,经独立样本t检验,P<0.05;2)与不伴有攻击行为组比较,经Mann-Whitney U检验,P<0.05。
2.2 group ICA 成分 基于72名被试的静息态fMRI数据分析,从100个独立成分中选择32个成分构成7个内在连接网络,分别为皮质下网络(subcortical networks, SN)、听觉网络(auditory network, ADN)、躯体运动网络(somatomotor network, SMN)、视觉网络(visual network, VSN)、认知控制网络(cognitive control network, CCN)、默认网络(default mode network, DMN)和小脑网络(cerebellar network, CBN)。挑选32个独立成分的标准是激活峰值位于灰质,与白质、脑室或者脑边缘的重叠最小,并且低频∕高频活动比例高[15],见图1。2.5 相关分析
精神分裂症患者功能连接状态转换次数与MOAS财产攻击评分(r=-0.521,P<0.001)、体力攻击评分(r=-0.421,P=0.004)和MOAS加权总分(r=-0.519,P<0.001)呈负相关,与言语攻击评分(r=-0.188,P=0.211)和自身攻击评分(r=-0.216,P=0.149)相关性无统计学意义。精神分裂症患者功能连接状态转换次数与PANSS阳性症状量表分(r=-0.161,P=0.286)、阴性症状量表分(r=0.112,P=0.458)、一般症状量表分(r=0.101,P=0.501)和PANSS总分(r=0.018, P=0.908)相关性无统计学意义。3 讨论
大脑活动本质上是一个快速变化的神经活动过程,动态时变特征是大脑功能状态的基本属性之一。动态功能连接用于探究不同脑区之间功能相互作用的动态变化,不仅能够观察到不同脑区之间连接强度时间变化,而且能够捕获自发重复出现的功能连接模式[1. 甄文凤, 马辛, 林祥吉, 等. 精神分裂症患者暴力犯罪行为相关因素研究[J]. 中国神经精神疾病杂志, 2019, 45(5): 288-292.
2. TIKÀSZ A, POTVIN S, DUGRÉ J R, et al. Violent behavior is associated with emotion salience network dysconnectivity in schizophrenia[J]. Front Psychiatry, 2020, 11: 143.
3. TIKÀSZ A, POTVIN S, RICHARD-DEVANTOY S, et al. Reduced dorsolateral prefrontal cortex activation during affective Go/NoGo in violent schizophrenia patients: an fMRI study[J]. Schizophr Res, 2018, 197: 249-252.
4. HOPTMAN M J, ANYONIUS D, MAURO C J, et al. Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior[J]. Am J Psychiat, 2014, 171(9): 939-948.
5. 魏钦令, 吴小立, 王继辉, 等. 有无冲动攻击行为首发精神分裂症脑灰质体积的比较[J]. 中国神经精神疾病杂志, 2011, 37(10): 625-628.
6. MARIA F, LINDA G, HAUKVIK U K. Imaging Violence in Schizophrenia: A Systematic Review and Critical Discussion of the MRI Literature[J]. Front Psychiatry, 2018, 9: 333
7. 黄悦勤. 医学科研中随机误差控制和样本量确定[J]. 中国心理卫生杂志, 2015, 29(11): 7.
8. FOLEY S R, KELLY B D, CLARKE M, et al. Incidence and clinical correlates of aggression and violence at presentation in patients with first episode psychosis[J]. Schizophr Res, 2005, 72(2-3): 161-168.
9. 张明园. 精神科评定量表手册[M]. 长沙: 湖南科学技术出版社, 1998.
10. ALLEN E A, ERHARDT E B, WEI Y, et al. Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study[J]. Neuroimage, 2012, 59(4): 4141-4159
11. 马士林, 梅雪, 李微微, 等. fMRI动态功能网络构建及其在脑部疾病识别中的应用 [J]. 计算机科学, 2016(43): 317-321.
12. ESPINOZA F A, ANDERSON N E, VERGARA V M, et al. Resting-state fMRI dynamic functional network connectivity and associations with psychopathy traits[J]. NeuroImage Clin, 2019, 24: 101970.
13. SAVVA A D, MITSIS G D, MATSOPOULOS G K. Assessment of dynamic functional connectivity in resting‐state fMRI using the sliding window technique[J]. Brain Behav, 2019, 9(4): e01255.
14. HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378.
15. ALLEN E A, ERHARDT E B, DAMARAJU E, et al. A baseline for the multivariate comparison of resting-state networks[J]. Front Syst Neurosci, 2011, 5: 2.
16. GU Y, LIN Y, HUANG L, et al. Abnormal dynamic functional connectivity in Alzheimer's disease[J]. CNS neurosci Ther, 2020, 26(9): 962-971.
17. 周洲, 钟元. 动态功能连接方法及在神经精神疾病中的应用研究[J]. 磁共振成像, 2021, 12(1): 73-76.
18. KRAKOWSKI M, JAEGER J, VOLAVKA J. Violence and psychopathology: A longitudinal study[J]. Compr Psychiatry, 1988, 29(2): 174-181.
19. HOPTMAN M J, ANTONIUS D. Neuroimaging correlates of aggression in schizophrenia: an update[J]. Curr Opin Psychiatry, 2011, 24(2): 100.
20. DU Y, PEARLSON G D, LIN D, et al. Identifying dynamic functional connectivity biomarkers using GIG‐ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder[J]. Hum Brain Mapp, 2017, 38(5): 2683-2708.
21. RABANY L, BROCKE S, CALHOUN V D, et al. Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and classification[J]. Neuroimage Clin, 2019, 24: 101966.
22. ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3): 663-676.
23. NOMI J S, VIJ S G, DAJANI D R, et al. Chronnectomic patterns and neural flexibility underlie executive function[J]. NeuroImage, 2017, 147: 861-871.
24. AHMED A O, RICHARDSON J, BUCKNER A, et al. Do cognitive deficits predict negative emotionality and aggression in schizophrenia[J]. Psychiat Res, 2018, 259: 350-357.
25. VAN DEN HEUVEL M P, SPORNS O. A cross-disorder connectome landscape of brain dysconnectivity[J]. Nat Rev Neurosci, 2019, 20(7): 435-446.
26. SIEGEL J S, RAMSEY L E, SNYDER A Z, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke[J]. Proc Natl Acad Sci U S A, 2016, 113(30): E4367-E4376.
27. RAICHLE M E. The restless brain: how intrinsic activity organizes brain function[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1668): 20140172.
28. CAO B, CHEN Y, YU R, et al. Abnormal dynamic properties of functional connectivity in disorders of consciousness[J]. NeuroImage Clin, 2019, 24: 102071.
29. KARBASFOROUSHAN H, WOODWARD N D. Resting-state networks in schizophrenia[J]. Curr Top Med Chem, 2012, 12(21): 2404-2414.
30. CAQUEO-URÍZAR A, FOND G, URZÚA A, et al. Violent behavior and aggression in schizophrenia: prevalence and risk factors. A multicentric study from three Latin-America countries[J]. Schizophr Res, 2016, 178(1-3): 23-28.
Dynamic functional connectivity analysis in resting-state fMRI: an application to schizophrenia patients with aggressive behaviors
MA Jiehua LIN Qianqian SHEN Zhihua WANG Yongguang
Department of Brain Functioning Research, The Seventh Hospital of Hangzhou
Abstract:Objective
To explore the characteristics of dynamic functional connectivity changes in schizophrenic patients with aggressive behaviors.
Methods
Seventeen schizophrenic patients with aggressive behavior, twenty-nine schizophrenic patients without aggressive behavior and twenty-six healthy controls were included in the study. The Modified Overt Aggression Scale (MOAS) score was used to assess the severity of aggressive behavior in schizophrenia patients. The resting-state functional magnetic resonance imaging (fMRI) data of schizophrenic patients and healthy controls were collected. After fMRI data preprocessing, dynamic functional connectivity (dFC) analysis was performed to obtain four states. Finally, the differences on the number of functional connectivity state transitions from one state to another were evaluated between the two groups.
Results
There were significant differences in the number of transitions among schizophrenic patients with aggressive behavior, schizophrenic patients without aggressive behavior and healthy controls [1.0 (0.0, 3.0) vs. 4.0 (2.5, 4.0) vs. 2.5 (1.0, 4.0), H=14.411, P=0.001], of which the schizophrenic patients with aggressive behavior was lower than the schizophrenic patients without aggressive behavior (P<0.001), but the schizophrenic patients with aggressive behavior increased compared with the healthy controls (P=0.041). The number of transitions in schizophrenic patients was negatively correlated with property attack score (r=-0.521, P<0.001), physical attack score (r=-0.421, P=0.004) and weighted total score (r=-0.519, P<0.001) of MOAS.
Conclusion
These preliminary findings support that the aggression in schizophrenia is associated with abnormal the number of transitions of dFC states.
Keywords: Schizophrenia;Aggressive behaviors;Functional magnetic resonance imaging;Resting state;Dynamic functional connectivity;Number of transitions;Group independent component analysis声明:本文作者享有本文著作权,《中国神经精神疾病杂志》专有本文出版权和信息网络传播权,转载请注明作者与出处。部分图转自网络。
初审:甘章平
审核:邢世会
审定发布:张为西