工劳快讯:汕尾美团骑手罢工取得阶段性胜利

记者调查泉州欣佳酒店倒塌曝惊人“案中案”:曾是卖淫场所,50名老板、官员卷入其中

退出中国市场的著名外企名单

去泰国看了一场“成人秀”,画面尴尬到让人窒息.....

【少儿禁】马建《亮出你的舌苔或空空荡荡》

生成图片,分享到微信朋友圈

自由微信安卓APP发布,立即下载! | 提交文章网址
查看原文

Long Feng Science Forum Seminar Series | Seminar #10



Dear All,

 

You are cordially invited to the tenth seminar of Long Feng Science Forum Seminar Series. It will be delivered by Prof. Zhi-Qin John XU (Shanghai Jiao Tong University) on October 10 (Monday). This seminar will discuss the "Simple Implicit Regularizations in Deep Learning".





Seminar Information

Time & Date: 9-10 am on October 10 (Monday), Beijing time


Host: Prof. Dong WANG, The Chinese University of Hong Kong, Shenzhen


Speaker: Prof. Zhi-Qin John XU,  Shanghai Jiao Tong University


Abstract: 

Why do neural network models that look so complex usually generalize well? To understand this problem, we study deep learning training and find some simple implicit regularization effects. The first is the frequency principle that neural networks learn from low frequency to high frequency. In this presentation, I will show some understanding and application based on the frequency principle. The second is the parameter condensation effect, which makes the number of effective neurons in large networks far less than the actual number of neurons. We attempt to understand the mechanism of condensation from the embedding principle of loss landscape and gradient flow. We further derive the implicit regularization of Dropout and find that it can promote condensation formation and limit the complexity of model fitting. These implicit regularizations all reflect the characteristic that neural networks tend to use simple functions to fit data in the training process, so as to achieve better generalization. Finally, I will discuss some important theoretical issues in neural networks.




Biography

Prof. Zhi-Qin John XU

Associate Professor

Institute of Natural Sciences,

School of Mathematical Sciences,

Shanghai Jiao Tong University


Zhi-Qin John Xu is an associate professor at Shanghai Jiao Tong University (SJTU). Zhi-Qin obtains B.S. in Physics (2012) and a Ph.D. degree in Mathematics (2016) from SJTU. Before joining SJTU, Zhi-Qin worked as a postdoc at NYUAD and Courant Institute from 2016 to 2019. He published papers in the Journal of Machine Learning Research, AAAI, NeurIPS, Communications in Computational Physics, SIMODS, European Journal of Neuroscience and Communications in Mathematical Sciences etc. He is a managing editor of the Journal of Machine Learning.




Participation

A. Zoom Online Meeting

https://us06web.zoom.us/j/87145493057?pwd=elVVT1V2Wk1hNzFmcmJmcytLSU5HZz09


Meeting ID: 871 4549 3057

Passcode: 1010


B. CUHK(SZ) WeChat Channel

Please feel free to scan the QR code below to access  CUHK(SZ) WeChat Channel to participate in the live broadcasting:


C. Weizan Live Broadcasting Platform

Or visit the Weizan live broadcasting platform (Welcome to click "Read more" and access the platform):

https://wx.vzan.com/plug-ins/?v=637922847453656237#/FixupIndex/980009879?shareuid=415330463





点击以下链接,进入理工时刻:


招生简章 | 港中大(深圳)供应链与物流管理高级管理人员硕士2023年招生简章


相遇在未来・访谈录|理工校友在卡内基梅隆大学(上)


喜讯 | 理工学院本科生姚南君与林泽昕两篇一作论文被《IEEE计算社会系统汇刊》和IEEE多媒体信号处理国际研讨会接收


喜讯 | 理工学院李玉田教授荣获2022年师风师德优秀奖


活动回顾 | 偏微分方程:分析、几何与拓扑的相互作用研讨会圆满落幕


科研速递 | 香港中文大学(深圳)理工学院解碧野教授团队在国际物理学期刊《Physical Review A》上发表文章


科研速递 | 林天麟教授团队在IEEE Transactions on Image Processing 上发表文章


相遇在未来・访谈录|理工校友在加利福尼亚大学圣地亚哥分校(下)


科研速递 | 香港中文大学(深圳)唐本忠院士团队发布首个聚集体科学通用数据库ASBase


科研速递 | 理工学院郑庆彬教授团队在国际碳材料顶级期刊Carbon上发表文章


文章有问题?点此查看未经处理的缓存