科研速递 | 理工学院唐本忠院士团队赵征教授在Matter上发表文章
近日,理工学院唐本忠院士和赵征教授在AIE智能传感材料领域实现突破,相关成果以“AIEgen-based smart system for fungal-infected wound monitoring and on-demand photodynamic therapy”为题发表于Cell Press旗下的旗舰刊Matter。
Matter介绍
Matter是Cell的姊妹期刊,也是Cell Press旗下的旗舰刊,由爱思唯尔(Elsevier)公司出版每月发行。涵盖材料科学的一般领域,从纳米到宏观,从基础到应用。认识到材料发现和开发促进了跨越多个学科的突破性技术,Matter旨在报导材料研究的所有重大进展,包括以前未知的和创新的研究成果。其2022年的影响因子为18.9,JCR分区Q1。
研究背景
与细菌相比,真菌具有由糖蛋白和多糖聚合物组成的刚性细胞壁,这对药物渗透造成了强大的屏障。因此,真菌感染更难治愈,更容易产生耐药性。早期检测和干预是十分必要的。然而,体外临床诊断方法既繁琐又耗时,使得患者们对真菌感染的重视度较低。为了解决这一问题,科学家们开发了一系列基于电化学传感器的智能伤口监测设备,帮助患者居家监测伤口的生理数据,如pH,温度,压力等通过柔性电极连续采集。然而,柔性电极的引入不仅提高了伤口敷料的成本还可能引发二次感染。薄膜荧光传感器作为一种低成本的非接触式传感器,可通过荧光分子与检测受体接触后发生化学反应,表现出荧光强度和光色的变化,从而实现可视化传感。通常,传统的荧光分子通常是聚集诱导猝灭(ACQ)分子,使其难以在薄膜状态下发挥理想的效果。聚集诱导发光材料(AIEgens)是一种具有聚集发光增强、光稳定性好,活性氧(ROS)产生能力强等优势,可应用于荧光传感器、微生物检测、光热和光动力治疗等。目前基于荧光传感的智能伤口敷料鲜有报道,且均针对于细菌感染,迄今为止在真菌感染监测和治疗方面仍处于空白。
研究方法
在这项工作中,作者充分利用AIE材料的光学优势,结合机器学习方法,解决了当前智能伤口敷料(真菌监测和治疗)开发中的盲点,开发了一种基于AIEgen的智能伤口敷料系统,用于真菌感染的伤口监测和按需光动力治疗。该智能系统包括含有AIE分子TBSMPPy的伤口敷料和一个安装在智能手机上的图像识别系统,避免了引入检测电极和电源系统,大大降低了智能敷料的成本。此外,商业液体敷料(LD)用作开发TBSMPPy LD的基质。所制备的TBSMPPy LD具有良好的粘附性、柔韧性和成膜性能。它作为荧光传感器和光敏剂,检测白色念珠菌(通常感染皮肤和粘膜组织)的生长环境(pH约5.5)并进行光动力治疗。智能手机上配备了紫外和白光光源,作为激发源,实现对伤口敷料荧光变化的检测。手机拍照片,上传到云软件,对感染程度进行数字化,并进一步反馈给手机。患者可以根据分析结果和应用程序的建议评估伤口感染的程度,并切换白光进行光动力治疗(图1)。该智能系统还可以让医生监测患者的伤口,并根据软件分析结果给出治疗方案,大大提高了医疗效率和治疗效果。
图1. 基于AIEgen的真菌感染伤口监测和按需光动力治疗智能系统的工作原理图
将制备的TBSMPPy LD暴露于不同的pH环境中,并记录PL变化。如图2所示,TBSMPPy LD在宏观上表现出荧光猝灭,薄膜的灰度值呈下降趋势(图2D和2E)。PL强度也显示出类似的结果,在TBSMPPy LD位于pH 5.5缓冲溶液中后,PL强度明显降低(图2F)。TBSMPPy-LD的PL变化主要归因于TBSMPPy的结构中的吡啶基团在pH 5.5缓冲溶液中被质子化,这增强了吡啶部分的吸电子能力并增强了TICT效应。
此外,随着测试环境变为酸性,TBSMPPy LD的ROS生成逐渐增加,并在pH=5.5时达到稳定水平(图2G)。此外,图2H表明,聚集有利于ROS的产生。所有上述数据表明,TBSMPPy LD在ROS产生方面具有良好的性能,特别是在酸性环境中,这使得TBSMPPy LD能够应用于真菌感染的监测和治疗。
图2. AIE分子TBSMPPy的光学性质表征及pH响应性测试
在验证了TBSMPPy LD的产生ROS的能力后,在低功率白光照射下进一步评估了TBSMPPy的抗真菌活性。如图3A所示,TBSMPPy在白色光照射下对白色念珠球菌杀灭率为97%,而未照射的TBSMPPy组的杀灭率可忽略不计(10.3%)。为了进一步确保TBSMPPy的高效抗真菌活性,我们使用市售抗真菌剂Diflucan作为阳性对照组来比较抗真菌活性。统计数据(图3B)显示,经照射的TBSMPPy组的杀伤率与Diflucan治疗组相当,甚至优于Diflucan组近10%(Diflucan处理组为88%)。
图3. TBSMPPy的体外光动力抗真菌性能及生物相容性测试
在体外证明TBSMPPy LD对白色念珠球菌有很好的响应性和杀伤作用后,我们建立了小鼠的伤口感染模型,在小鼠模型上对我们的系统进行检测,如图4所示,用TBSMPPy LD涂覆伤口区域后,用手机相机在紫外灯下拍摄伤口照片。照片被上传到APP进行分析。几秒钟后,结果被发回。如果被感染,敷料会发出微弱的橙色光,手机界面会呈现红色。此外,给出了伤口区域的归一化灰度值,显示感染警告和建议照射提醒。如果没有感染,伤口敷料会发出明亮的荧光,手机会发出绿色背景和健康报告。在接收到感染提醒后,可开启白光光源进行光动力治疗。在1分钟低功率白光照射下,能有效抑制真菌感染,感染的组织在一周内恢复,优于商业抗真菌药物Diffican。(图5)
图4. 基于AIEgen的智能系统的操作程序,用于真菌感染的治疗
图5. 基于AIEgen的智能系统的抗真菌治疗效果图
研究结论
在此工作中,作者创造性的首次将AIE材料与人工智能结合,开发了一种基于AIEgen的智能系统,用于特定种类的真菌感染的早期监测和治疗。结合深度机器学习方法,使得AIEgen智能化,构建了一个基于AIEgen的智能系统,在手机上实现了真菌感染的几秒钟诊断。此外,得益于AIE材料独特的荧光特性、灵敏的pH响应和ROS产生能力,通过手机光源照射,TBSMPPy被成功用于真菌感染治疗且其有效的真菌抑制率超过96%。这一设计已在小鼠模型中得到证实,体内研究结果表明,在1分钟低功率白光照射下,能有效抑制真菌感染,感染的组织在一周内恢复,优于商业抗真菌药物Diffican。此外,该智能系统可通过互联网增强患者和医生之间的沟通,以实现真实的临床医疗场景,显著提高医疗效率。这一发现将激励和推动AIE材料在智能健康监测领域的发展。
作者简介
唐本忠院士,赵征教授为本文通讯作者。
唐本忠,中国科学院院士、发展中国家科学院院士、亚太材料科学院院士、国际生物材料科学与工程学会联合会“生物材料科学与工程Fellow”、英国皇家化学会会士、国家自然科学基金基础科学中心项目负责人,曾任广东省引进创新科研团队带头人、973计划项目首席科学家、国家自然科学基金重大项目负责人。现任中国化学会常务理事、华南理工大学和德国威利出版社(Wiley)联合期刊Aggregate主编、《中国科学:化学》副主编、《化学进展》副主编、Adv. Polym. Sci. (Springer)编辑等。在国内外顶尖杂志上发表论文1600余篇,他引十六万余次,h指数为177。曾先后获得多项荣誉及奖励,如国家自然科学一等奖(2017),Nano Today Award (2021),Biomaterials Global Impact Award (2023),何梁何利科学与技术进步奖(2017)、第27届夸瑞兹密国际科学奖(2014)、美国化学会高分子学术报告奖(2012)、国家自然科学二等奖(2007)、裘槎高级研究成就奖(2007)、中国化学会高分子基础研究王葆仁奖(2007)和爱思唯尔出版社冯新德聚合物奖(2007)等。
赵征,香港中文大学(深圳)理工学院助理教授,校长青年学者,国家高层次青年人才,中国人体健康科技促进会临床微生物与感染精准专业委员会常务委员,深圳市分子聚集体功能材料重点实验室副主任,港中深第二附属医院AIE临床转化中心执行副主任。赵征教授于中国科学院上海有机化学研究所取得博士学位,后赴香港科技大学化学系进行博士后研究,2021年加入香港中文大学(深圳)理工学院开展研究工作。当前的研究兴趣包括新型聚集体光功能材料、聚集体光敏剂及其应用、近红外二区材料及其应用。已在Nat. Commun、JACS、Angew. Chem. Int. Ed.、Matter、ACS Nano.、Adv. Mater、Adv. Funct. Mater.、Nat. Sci. Rev、Mater. Today、Chem. Sci.等国际顶级期刊发表论文80余篇,论文总计被引用7000余次,H-index为46。目前兼任科学出版社聚集诱导发光系列丛书编委,Aggregate期刊顾问编委,National Science Review期刊青年编委,Smart Molecules期刊青年杂志编委,Chinese Chemical Letters 期刊青年编委,集成技术期刊青年编委,National Science Review客座编辑,Biomaterials期刊客座编辑等。
周琨博士为本文第一作者。
周琨博士,2021年博士毕业于西安交通大学前沿科学技术研究院,师从何刚教授。毕业后赴香港中文大学(深圳)进行博士后研究,师从唐本忠院士。研究方向为聚集体光敏剂的设计合成及在智能诊疗方面的应用。以第一作者身份在Matter,Angew等期刊发表论文8篇。
【END】
点击以下链接,进入理工时刻:
SSE Official Newsletter Issue 14
活动回顾 | 翔龙鸣凤科学论坛研讨会系列之2023物理研讨会圆满落幕
活动回顾 | 中国材料大会 - 翔龙鸣凤科学论坛之聚集体材料青年研讨会圆满落幕
活动回顾 | 中国材料大会 - 翔龙鸣凤科学论坛之聚集体材料青年研讨会圆满落幕