2019年度生信类SCI调查报告出炉!还能愉快地短平快吗?
The following article is from 科研讲坛 Author 大师兄
生信大数据挖掘可以发表SCI,近2年几乎成了一种科研圈的常识,但是拒稿率越来越高、越来越难发也已经成了共识!
生信友好杂志 | 2019接受量 | IF因子 |
J Cell Biochem | 71 | 3.40 |
Oncol Lett | 70 | 1.87 |
Mol Med Rep | 62 | 1.85 |
J Cell Physiol | 58 | 4.50 |
Oncol Rep | 43 | 3.04 |
Sci Rep | 42 | 4.01 |
Cancer Cell Int | 38 | 3.44 |
Med Sci Monit | 36 | 1.98 |
Front Oncol | 35 | 4.13 |
BMC Cancer | 34 | 2.93 |
PeerJ | 34 | 2.00 |
J Cancer | 32 | 3.18 |
J Comput Biol | 31 | 0.88 |
Bioinformatics | 30 | 4.53 |
Onco Targets Ther | 30 | 3.00 |
Cancer Med | 27 | 3.36 |
Biomed Res Int | 26 | 2.20 |
Front Genet | 26 | 3.52 |
Gene | 26 | 2.64 |
Cancer Manag Res | 25 | 2.24 |
Pathol Res Pract | 23 | 1.79 |
Biosci Rep | 22 | 2.54 |
Cancers (Basel) | 22 | 6.16 |
Aging (Albany NY) | 21 | 5.52 |
Medicine (Baltimore) | 21 | 1.80 |
J Transl Med | 20 | 4.10 |
EBioMedicine | 19 | 6.68 |
Int J Mol Sci | 17 | 4.18 |
PLoS One | 17 | 2.78 |
Exp Ther Med | 15 | 1.45 |
J Exp Clin Cancer Res | 15 | 5.65 |
BMC Med Genomics | 14 | 2.57 |
J Cell Mol Med | 14 | 4.66 |
Biomed Pharmacother | 13 | 3.74 |
Int J Mol Med | 13 | 2.93 |
Biochem Biophys Res Commun | 12 | 2.71 |
BMC Bioinformatics | 12 | 2.51 |
Int J Oncol | 12 | 3.57 |
Am J Transl Res | 11 | 3.27 |
Clin Cancer Res | 11 | 8.91 |
FEBS Open Bio | 11 | 1.96 |
Int J Cancer | 11 | 4.98 |
Oncogene | 11 | 6.63 |
Breast Cancer Res Treat | 10 | 3.47 |
2019年的统计↑(按文章接收量排序)
生信友好杂志 | 2019接受量 | IF因子 |
Clin Cancer Res | 11 | 8.91 |
EBioMedicine | 19 | 6.68 |
Oncogene | 11 | 6.63 |
Cancers (Basel) | 22 | 6.16 |
J Exp Clin Cancer Res | 15 | 5.65 |
Aging (Albany NY) | 21 | 5.52 |
Int J Cancer | 11 | 4.98 |
J Cell Mol Med | 14 | 4.66 |
Bioinformatics | 30 | 4.53 |
J Cell Physiol | 58 | 4.50 |
Int J Mol Sci | 17 | 4.18 |
Front Oncol | 35 | 4.13 |
J Transl Med | 20 | 4.10 |
Sci Rep | 42 | 4.01 |
Biomed Pharmacother | 13 | 3.74 |
Int J Oncol | 12 | 3.57 |
Front Genet | 26 | 3.52 |
Breast Cancer Res Treat | 10 | 3.47 |
Cancer Cell Int | 38 | 3.44 |
J Cell Biochem | 71 | 3.40 |
Cancer Med | 27 | 3.36 |
Am J Transl Res | 11 | 3.27 |
J Cancer | 32 | 3.18 |
Oncol Rep | 43 | 3.04 |
Onco Targets Ther | 30 | 3.00 |
BMC Cancer | 34 | 2.93 |
Int J Mol Med | 13 | 2.93 |
PLoS One | 17 | 2.78 |
Biochem Biophys Res Commun | 12 | 2.71 |
Gene | 26 | 2.64 |
BMC Med Genomics | 14 | 2.57 |
Biosci Rep | 22 | 2.54 |
BMC Bioinformatics | 12 | 2.51 |
Cancer Manag Res | 25 | 2.24 |
Biomed Res Int | 26 | 2.20 |
PeerJ | 34 | 2.00 |
Med Sci Monit | 36 | 1.98 |
FEBS Open Bio | 11 | 1.96 |
Oncol Lett | 70 | 1.87 |
Mol Med Rep | 62 | 1.85 |
Medicine (Baltimore) | 21 | 1.80 |
Pathol Res Pract | 23 | 1.79 |
Exp Ther Med | 15 | 1.45 |
J Comput Biol | 31 | 0.88 |
2019年的统计↑(按IF大小排序)
其中J Cell Biochem、J Cell Physiol、Oncol Lett、Mol Med Rep、Cancer Cell Int、Oncol Reports、Med Sci Monit、Front Oncol对纯生信类的文章最为友好的。
所以我们在这里抽样调查的方式对不同IF因子档次的文章质量和分析策略进行展示,看看是否真的越来越难发了。
首先来看看Clin Cancer Res(IF=8.9)
以下就是发表在上面的纯生信类文章:
杂志 | |
Clin Cancer Res | |
CCR的生信分析文章在探索的科学问题是:年龄、某一个代谢通路相关基因群、基因组不稳定、基因可变剪接活动、免疫微环境在和某1种肿瘤或者多种肿瘤的不同分期的预后相关性。
有人说,CCR的分数太高了,达不到,好吧,那咱们就挑一些3-5分之间的例子来看看。
序号 | 2019文章名称 | 杂志 | IF因子 |
1 | Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels. | Int J Cancer | 4.98 |
2 | Systematic identification of lincRNA-based prognostic biomarkers by integrating lincRNA expression and copy number variation in lung adenocarcinoma. | ||
3 | Identification of prognosis-related alternative splicing events in kidney renal clear cell carcinoma. | J Cell Mol Med | 4.66 |
4 | Prognostic power of a lipid metabolism gene panel for diffuse gliomas. | ||
5 | Identification of potential prognostic TF-associated lncRNAs for predicting survival in ovarian cancer. | ||
6 | A large-scale transcriptome analysis identified ELANE and PRTN3 as novel methylation prognostic signatures for clear cell renal cell carcinoma. | ||
7 | Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of cutaneous melanoma. | ||
8 | The underlying pathophysiology association between the Type 2-diabetic and hepatocellular carcinoma. | ||
9 | Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and Angiogenesis. | Int J Mol Sci | 4.18 |
10 | Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms. | ||
11 | LINC00957 Acted as Prognostic Marker Was Associated With Fluorouracil Resistance in Human Colorectal Cancer. | Front Oncol | 4.13 |
12 | Construction and Investigation of a lncRNA-Associated ceRNA Regulatory Network in Cholangiocarcinoma. | ||
13 | Identification and Validation of Tumor Stromal Immunotype in Patients With Hepatocellular Carcinoma. | ||
14 | Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. | J Transl Med | 4.10 |
15 | Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. | ||
16 | A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. | ||
17 | LMX1B mRNA expression and its gene body CpG methylation are valuable prognostic biomarkers for laryngeal squamous cell carcinoma. | Biomed Pharmacother | 3.74 |
18 | A long non-coding RNA signature to improve prognostic prediction in clear cell renal cell carcinoma. | ||
19 | Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. | ||
20 | Polycystic Ovary Syndrome: Novel and Hub lncRNAs in the Insulin Resistance-Associated lncRNA-mRNA Network. | Front Genet | 3.52 |
21 | Survival Analysis of Multi-Omics Data Identifies Potential Prognostic Markers of Pancreatic Ductal Adenocarcinoma. | ||
22 | A six-CpG-based methylation markers for the diagnosis of ovarian cancer in blood. | J Cell Biochem | 3.40 |
23 | Identification of aberrantly expressed lncRNA and the associated TF-mRNA network in hepatocellular carcinoma. | ||
24 | Integrative prognostic subtype discovery in high-grade serous ovarian cancer. |
我们将3-5分的公共数据生信SCI模式分为以下9类:
1.多肿瘤组合分析,找共享基因;
2.单疾病的多组学(转录组、DNA甲基化、ATAC-seq)联合分析;
3.单细胞测序数据分析:聚类分析、PCA/t-SNE降维、细胞分群、拟时分析、TCGA数据验证的创新模式;
4.肿瘤类免疫浸润分析价值分子;
5.Biomarker类:lncRNA、甲基化印记、miRNA作为预后标志物;
6.WGCNA基因共表达模块:疾病相关的共表达基因;
7.转录因子-lncRNA在肿瘤发生中的分析:
8.基因突变、拷贝数变化对肿瘤的影响和功能分析;
9.m6A表观遗传组在肿瘤发病中的大数据挖掘;
总之,以此类推,分数和工作量是成正比的,不过还是建议大家尽量做点验证实验,不做实验的生信文章拒稿率还是不低的。
你有临床样本
我有生信博士
你+我=高质量分析数据
扫码备注:生信SCI
关注后获取《科研修炼手册》1、2、3、4、5、6、7、8、9、10