如何让质量无中生有? | 量子群英传
2013年3月14日,欧洲核子研究组织(Conseil Européenn pour la Recherche Nucléaire,简称CERN)正式宣布,LHC(Large Hadron Collider,大型强子对撞机)的紧凑渺子线圈(CMS)和超环面仪器(ATLAS)于2012年7月4日,测量到了被称之为“上帝粒子”、具有零自旋与偶宇称特点的希格斯玻色子(Higgs boson)。
欧洲核子研究中心可以说是世界上粒子物理研究最前沿的地方。二十多年以前,万维网在这儿悄然诞生,之后的发展有目共睹。2012年,CERN宣告找到“上帝粒子”的消息震惊了全世界。第二年,诺贝尔奖委员会将2013年的物理学奖授予了与此相关的两位理论物理学家:弗朗索瓦·恩格勒(François Englert, 1932-)和彼得·希格斯(Peter Higgs,1929-)[1]。
图1左显示的是瑞士日内瓦西北部的郊区,左边已经能看到法国边境处的农田,背景是美丽的日内瓦湖。漂亮的建筑、翠绿的草坪,你可能很难想象,在这一片宁静祥和的美景之下,隐藏着一个巨大的科学工程:欧洲核子研究中心的大型强子对撞机LHC。
LHC隐藏在100米深的地下,位于一个周长27公里的巨大环形隧道内。当年,世界各国的科学团体联合建造这个世界上最大粒子加速器的主要目的,就是寻找希格斯粒子。这也是一台世界上最昂贵的“显微镜”,几年来,世界各国合作总耗资达130亿美元,上万人为此日夜辛勤工作,目的就为了追踪一个平均寿命只有1.56×10−22秒(s)的小小的基本粒子。
图2:希格斯玻色子的产生
图3:希格斯玻色子是标准模型的最后一块拼图
有关规范场,我们留待下一篇介绍,此篇仅介绍“自发对称破缺”(spontaneous symmetry breaking) 如何解决质量问题。
你或许并不熟悉南部阳一郎(Yoichiro Nambu,1921-2015)的名字,但一听就知道是一位日本人。其实他曾被誉为20世纪后半叶最伟大的理论物理学家之一,生于日本逝于日本,但大部分学术生涯在美国度过,是美籍日裔科学家中获诺奖第一人。而他对物理学的最主要贡献—— “对称性自发破缺”机制的研究,其重要的科学意义,也往往被低估。
阳一郎于1970年加入美国国籍,2008年荣获诺贝尔物理学奖,2015年7月5日在大阪去世。他是一个时代少有的先知先觉者,就像著名超对称理论家布鲁诺·朱米诺(Bruno Zumino,1923-)曾经评价的那样:“他总是比我们超前10年,所以我曾试图理解他的工作,以便能对一个10年后将会兴盛的领域有所贡献。可是,与我的期望相反,我费了10年的工夫才理解他的工作。”
阳一郎首先从量子场论的角度,用对称破缺的概念,仔细研究了BCS超导理论问题。超导现象中起作用的是电子之间的电磁相互作用,根据规范理论,电磁场符合U(1)群所描述的相位旋转对称性(图4左)。但是,当电子双双组成“库珀对”之后,失去了相位360度的旋转对称性,只留下两个元素Z2群的对称性。U(1)到Z2对称性的变化,改变了原来物质能带图中的费米面结构,改变了电子运动规律,从而形成了超导[2]。
BCS理论中的对称破缺,与铅笔从平衡位置倒下十分类似。平衡的铅笔具有旋转对称性,但它可以向任何一个方向倒下,倒下后便失去了旋转对称性。电磁作用中的“方程”类似于平衡的铅笔;系统的“基态”不止一个,而是有无穷多个,类似于铅笔可以倒下的无穷多个“方向”。也就是说,物理规律具有旋转对称性,“倒向”一个具体的“基态”后,旋转对称性就“破缺”了。
2008年诺贝尔物理学奖得主中的另两位日本本土物理学家小林诚(Kobayashi Makoto,1944-)和益川敏英(Toshihide Maskawa,1940-)在对称破缺研究方向上更进一步。
04 希格斯机制
自发对称破缺展现了一个重要的科学结论:某些情况下,物理实验得到与自然规律(方程)不一样的结果,那不一定是“实验违背了规律”,而是因为方程描述一般情形,我们观察到的物理世界只是方程的一个解。这个解是方程整体对称性自发破缺后的结果。 回到前面说的质量问题:规范理论中粒子质量都为0,但现实世界中存在很多有质量的粒子。“这些质量可能是来自于自发对称破缺?”——这就是希格斯机制的想法。 也就是说,希格斯机制首先假设所有粒子都没有质量,这些粒子构造出漂亮的规范场理论和标准模型,然后再从规范理论之外寻找一种方法,给所有的粒子加上它应该有的质量。于是,这种“无中生有”的“产生质量”的各种方案应运而生。这其中最简单的并且大多数人最喜欢的一种,便是在1964年分别由三组研究人员独立提出的希格斯机制。 也不是一定要有Higgs粒子来提供质量,还可以有别的方法。例如,根据爱因斯坦相对论所得出的质能关系:E = mc2,质量和能量是互相联系的。可以说质量的一部分可以来源于能量,这种质量便与Higgs粒子没什么关系。
图6:质量的来源
比如说,如图6a,设想一个无质量的盒子,其中充满了不停地从四壁来回反射的光子。光子及盒子都没有静止质量,但是由于光子带有总能量E,因而整个盒子可以有与能量相对应的m=E/c2的质量(图6a)。
实际上,在我们即将介绍的标准模型中,质子质量的绝大部分就是来源于与上述光子盒类似的机制(图6b)。质子的静止质量为938MeV,组成质子的三个夸克的总质量仅为11MeV,剩余的927 MeV的质量从何而来呢?是来源于强相互作用的传递粒子“胶子”。胶子g和光子g一样,没有静止质量,但质子中的许多胶子在一起运动和相互作用,因此具有的束缚能,便是质子中绝大部分质量的来源。 如果空间中存在某种场,场与在其中运动的粒子相互作用。这种作用的结果便有可能改变运动粒子的能量,从而赋予粒子以相应的“质量”,这是希格斯机制能够赋予粒子质量的基本道理。场的真空态是能量最低的状态。但是一般来说,能量最低的状态对应于场强为0。如果场的势能曲线比较特别,比如通常使用的所谓“墨西哥帽子”的形状(图6c)。这时,能量最低的状态是无限简并的,即如图6c所示的墨西哥帽向下凹的一圈。这一圈的能量最低,但场强却不为0。希格斯场的真空态,便可以由这种势能曲线描述的系统,产生“自发对称破缺”而得到,就像图中所画的小球无法停在中间能量较高的不稳定位置,最后朝一边滚下到谷底某一点的情形。因此,希格斯机制假设真空中存在着场强非零且稳定的希格斯场。这种场无处不在,无孔不入,质量为零的各种基本粒子身陷其中,与希格斯场相互作用,并且获得它应该具有的质量。
从现代场论的观点,场的激发态便表现为粒子。希格斯场的真空态有4种激发模式(图6c的左上图),其中沿着势能曲线对称轴绕圈的相位变化模式有3种,对应于3种质量为0的Goldstone粒子(戈德斯通粒子),这些粒子在与其它粒子反应时消失不见,也称被“吃”掉了,只有一种沿着势能曲线“径向”振动的激发模式对应于有质量的场粒子,也就是被大家称之为“上帝粒子”的希格斯粒子。
综上所述,希格斯粒子解决了质量的问题,物理学家们得以在规范场的基础上建立标准模型理论,将除了引力之外的其它三种力,统一在同一个模型中。标准模型包括了61种基本粒子,而希格斯粒子是这些粒子中,最后一个被“发现”的。因此,希格斯粒子的发现,毫无疑问地成为验证标准模型的重要里程碑。
参考文献:
[1]Higgs P W. Broken Symmetries and the Masses of Gauge Bosons[J]. Physical Review Letters,1964,13 (16): 508–509.
[2]Nambu, Y.; Jona-Lasinio, G. (October 1961)."Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II". Physical Review 124: 246–254。.
[3]M. Kobayashi, T. Maskawa (1973). "CP-Violation in the Renormalizable Theory of Weak Interaction". Progress of Theoretical Physics 49 (2): 652–657.
赛先生
启蒙·探索·创造
如果你拥有一颗好奇心
如果你渴求知识
如果你相信世界是可以理解的
欢迎关注我们投稿、授权等请联系
saixiansheng@zhishifenzi.com