查看原文
其他

使用 Pandas 处理亿级数据

编程派 2020-09-13

作者:Jiaxing


来源:http://www.justinablog.com/archives/1357

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:

  • 硬件环境

    • CPU:3.5 GHz Intel Core i7

    • 内存:32 GB HDDR 3 1600 MHz

    • 硬盘:3 TB Fusion Drive

  • 数据分析工具

    • Python:2.7.6

    • Pandas:0.15.0

    • IPython notebook:2.0.0

源数据如下表所示:

| ----- | | | Table | Size | Desc | 
| ServiceLogs | 98,706,832 rows x 14 columns | 8.77 GB | 交易日志数据,每个交易会话可以有多条交易 | 
| ServiceCodes | 286 rows × 8 columns | 20 KB | 交易分类的字典表 |

数据读取

启动IPython notebook,加载pylab环境:

  1. ipython notebook --pylab=inline

Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。

  1. import pandas as pd

  2. reader = pd.read_csv('data/servicelogs', iterator=True)

  3. try:

  4.    df = reader.get_chunk(100000000)

  5. except StopIteration:

  6.    print "Iteration is stopped."

| ----- | | | 1百万条 | 1千万条 | 1亿条 | 
| ServiceLogs | 1 s | 17 s | 263 s |

使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。

  1. loop = True

  2. chunkSize = 100000

  3. chunks = []

  4. while loop:

  5.    try:

  6.        chunk = reader.get_chunk(chunkSize)

  7.        chunks.append(chunk)

  8.    except StopIteration:

  9.        loop = False

  10.        print "Iteration is stopped."

  11. df = pd.concat(chunks, ignore_index=True)

下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。

| ----- | | Chunk Size | Read Time (s) | Total Time (s) | Performance | 
| 100,000 | 224.418173 | 261.358521 | | 
| 200,000 | 232.076794 | 256.674154 | | 
| 1,000,000 | 213.128481 | 234.934142 | √ √ | 
| 2,000,000 | 208.410618 | 230.006299 | √ √ √ | 
| 5,000,000 | 209.460829 | 230.939319 | √ √ √ | 
| 10,000,000 | 207.082081 | 228.135672 | √ √ √ √ | 
| 20,000,000 | 209.628596 | 230.775713 | √ √ √ | 
| 50,000,000 | 222.910643 | 242.405967 | | 
| 100,000,000 | 263.574246 | 263.574246 | |

如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。

数据清洗

Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。

首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 *DataFrame.notnull() *,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:

Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和 DataFrame.dropna()两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:

  1. df.dropna(axis=1, how='all')

共移除了14列中的6列,时间也只消耗了85.9秒。

接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个",",所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。

对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!

数据处理

使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

  1. df['Name'] = df['Name'].astype(np.datetime64)

对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。

  1. df.groupby(['NO','TIME','SVID']).count() # 分组

  2. fullData = pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接

  3. actions = fullData.pivot_table('SVID', columns='TYPE', aggfunc='count') # 透视表

根据透视表生成的交易/查询比例饼图:

将日志时间加入透视表并输出每天的交易/查询比例图:

  1. total_actions = fullData.pivot_table('SVID', index='TIME', columns='TYPE', aggfunc='count')

  2. total_actions.plot(subplots=False, figsize=(18,6), kind='area')

除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:

  1. tranData = fullData[fullData['Type'] == 'Transaction']

该子表的大小为 [10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非">5TB"数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。


题图:pexels,CC0 授权。

点击阅读原文,查看更多 Python 教程和资源。

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存