查看原文
其他

进展 | 皮肤型超级电容器的研究

2017-01-11 A05组 中科院物理所


近年来,随着柔性可穿戴电子学的蓬勃发展,皮肤型电子器件的研究和制备已成为该领域的焦点之一。为了构筑一体化的电子系统,人们迫切需要一型的柔性、超薄、轻量化的皮肤型能量存储装置。超级电容器作为一种新型的储能器件,引起了研究者们的广泛关注,然而传统的薄膜型超级电容器厚度一般在20 μm以上,无法满足柔性和皮肤电子学器件的实际要求。此外,该类超级电容器多采用金属集流极和衬底,由于集流极多为脆性材料,价格高昂,且器件必须依附衬底,无法实现大角度弯折,因此现有器件难以应用于柔性便携电子学,特别是皮肤电子学领域。


  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实验室“纳米材料与介观物理”研究小组(A05组),多年来一直致力于碳纳米结构的制备、物性与应用基础研究,近年来在碳纳米材料基柔性储能器件领域取得了系列成果(Energ. Environ. Sci. 2012, 5, 8726; Adv. Mater. 2013, 25, 1058; Nano Res. 2014, 7, 1680; Adv. Energy Mater. 2015, 5, 1500677; Nanoscale 2015, 7, 12492)。


最近,该课题组研究生栾平山、张楠、张强在解思深院士、周维亚研究员的指导下,与南开大学化学学院牛志强教授等人合作研制出一种柔性、超薄、自支撑、高性能的皮肤型超级电容器。其题为“Epidermal supercapacitor with high performance”的研究工作发表在Advanced Functional Materials(2016, 26, 8178-8184)杂志上,并被选为封面文章。


他们利用直接生长的碳纳米管薄膜与PEDOT进行复合,并对其负载量和电化学性能进行优化。得益于大量“Y型结”构成的连续网络结构,该复合薄膜具有高达~1600 S cm-1的电导率和~300 MPa的力学强度,有助于皮肤型器件的构筑(图1)。


图1 不同电镀圈数时,复合薄膜比电容量及PEDOT含量(a)、电导率(b)和应力-应变曲线(c)。纯碳纳米管薄膜(d)和复合薄膜(e)SEM图像,纯碳纳米管薄膜(f)和复合薄膜(g)TEM图像。


他们提出一种基于衬底表面能差异的分步分离技术,实现了器件和衬底的无损分离,构筑出厚度约为1 μm的超薄器件(图2)。

图2 (a)皮肤型超级电容器的组装过程示意图。SWCNT/PEDOT复合薄膜(b)和皮肤型超级电容器(c)-(d)的光学照片。(e)-(f) 皮肤型超级电容器截面的SEM图像。


经测试,这种皮肤型超级电容器的比电容为56 F g-1(相对于两电极质量),能量密度为6.0 W h kg-1,功率密度为332 kW kg-1,响应时间为5.4 ms,此外器件还可耐受105次的弯折。相对于其它薄膜器件,该皮肤型超级电容器在比电容量、功率密度、响应时间上均体现出显著优势(图3)。

 图3皮肤型超级电容器的循环伏安曲线(a)和恒流充放电曲线(c)。(b)皮肤型超级电容器(SC-E)与其它薄膜器件在20 Vs-1扫描速率下的循环伏安曲线。(d)-(f)皮肤型超级电容器与其它薄膜器件的性能对比。


有望应用于柔性可穿戴电子学和皮肤电子学等领域(图4)。


      图4 皮肤型超级电容器实物演示与杂志封面图片


相关研究得到了科技部、国家自然科学基金委和中科院的支持。
文章链接:http://onlinelibrary.wiley.com/doi/10.1002/adfm.201603480/full

编辑:HWQ


近期热门文章Top10

↓ 点击标题即可查看 ↓

1. 通往物理学世界的地图

2. 史上最难逻辑题!据说99.9%的人都做不出来……

3. 学校教给你的N个谎言

4. 不能说的秘密:薛定谔方程是怎么推导出来的

5. 你好,我在10维时空等你

6. 正经向 | 葫芦娃中的那些“黑科技”

7. 圣诞老人的真面目

8. 妹子办公室进老鼠了,能忍?

9. 十个问题带你认识弦理论!

10. 物质本身有颜色吗?

点此查看以往全部热门文章


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存