查看原文
其他

高通量3D打印工艺,哈佛大学的直接书写技术的特点是什么?

2017-05-11 3D科学谷 3D科学谷

要提高3D打印的速度,在粉末床激光熔化工艺领域,通过增加激光光束或安装激光阵列来提高打印速度;在材料喷射3D打印工艺领域,通过多喷嘴的方式可以显著提升打印速度。


在高通量的多喷嘴3D打印工艺方面,已经实现商业化的企业不在少数。其中Xjet的喷墨打印系统每秒钟喷射出上千滴“油墨”,听起来有点像大幅面数码打印在Z轴上增加了一个维度。其他包括惠普的多射流熔融技术,则将3D打印速度提升了十倍。


高通量3D打印领域,另一个十分具有想像空间的技术是直接书写技术,这项技术专利中就包括哈佛大学Lewis教授的直接书写专利,那么这一Direct Write打印技术除了实现高通量的3D打印工艺,还有哪些特点呢?


又快又准

还可以多材料!

Lewis教授的直接书写技术描述中重点是多喷嘴Multinozzle沉积系统,这个系统包括两个独立的微通道网络,第一微通道网络和第二微通道网络。第一种油墨主要是高分子塑料,包括硅胶以及环氧树脂组成的油墨。

Lewis教授认为这种直接书写的打印技术有利于创建最小收缩和变形的结构,并且可实现大尺度打印的可能,这种可以用来实现平面和三维维度上微结构的零件快速生产具有广阔的应用空间。具体可商业化的领域包括印刷电子、太阳能电池、微流体芯片、新型复合材料、组织工程等。

根据3D科学谷的市场研究,在直接书写3D打印工艺方面,LLNL美国劳伦斯·利弗莫尔国家实验室也颇为活跃,LLNL还开展了一个新的金属3D打印技术研究项目–金属直写技术(Direct Metal Writing),并希望通过该技术克服目前粉末床3D打印技术所存在的不足。


与粉末床3D打印技术不同的是,LLNL金属直写技术所使用的打印材料不是金属粉末,而是由金属铸块加热而成的半固体状材料,材料中的固体金属颗粒被液体金属所包围,呈现出膏体一样的状态。像膏体一样的金属材料在压力的作用下,通过打印喷嘴挤出。


与哈佛大学Lewis教授的直接书写专利中提到的一致,这种工艺的关键在于如何掌握材料的流动属性


而LLNL实验的高性能计算能力可以准确模拟材料的流动,LLNL将这种模拟技术用在开发碳纤维复合材料的3D打印工艺上,模拟了碳纤维复合材料流经3D打印机喷头,以数以千计的液滴形成固体的过程。

https://v.qq.com/txp/iframe/player.html?vid=w0380te4iu9&width=500&height=375&auto=0

而Lewis教授已经实现商业化的直接书写工艺包括Voxel8多材料3D电子打印机上的应用,Voxel8的特制油墨会通过一个250微米直径的专用喷嘴进行沉积。一旦打印,会在室温下很快干燥,不需要后处理。这些性质使得它能够在传统的热塑性材料上打印。


此外,德国卡尔斯鲁厄理工学院(KIT)还开发出了一种神奇的3D打印墨水。它是一种光敏材料,可以通过纳米级的直接激光书写(DLW)技术3D打印成立体产品。这种技术可以用来打印医疗领域的细胞培养支架。


在具体的应用端,GE已经成为这种技术的先行应用者,他们通过“直接书写”3D打印机来为无线天线和其他传感器制造镶嵌部分以及刻画电子电路,这些打印材料含银或其它金属材料,通过3D打印机将氮气与铜、银、金液滴和半导体墨水混合在一起,然后一层层“刻画”出所需要的电路来。


部分资料参考自:Patent: US009643358

图片来源:Patent: US009643358

查找往期文章,请登陆www.51shape.com,在首页搜索关键词

网站投稿请发送至editor@51shape.com

欢迎转载,如需加入白名单请将微信公众号回复至3D科学谷微信公众号


点击延伸阅读


哈佛大学实现精准可控的4D打印

视频 l 哈佛大学打印出带血管的人工组织

哈佛科学家3D打印出第一个完全自主软机器人

TNO与TU/e合作剑指印刷电子及医疗等领域

3D打印在结构电子中有怎样的应用?

复合3D打印工艺,功能性电子产品高效制造

全球最先进的3D打印实验室-LLNL

3D与大数据手牵手,探秘GE位于格林维尔的工厂



点击“阅读原文”

登录维捷官方网站


广告合作请加3D科学谷QQ:2509957133

3D科学谷3D产业链QQ群:529965687

项目寻求融资报道,请发送介绍至editor@51shape.com

加入3D科学谷微信群请先加群主微信号daisylinzhu



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存