查看原文
其他

这个是单细胞混的最惨的一次

生信技能树 生信技能树 2022-08-15

最近课题组的文献分享交流,有一个小伙伴讲的是最近的一篇nature文章:《ecDNA hubs drive cooperative intermolecular oncogene expression》, 有点复杂,不仅仅是有多组学,还有单细胞。如下所示:

GSE159972  [ChIP]
GSE159985  [HiChIP]
GSE160148  [scRNA and scATAC-Seq]
GSE175451  [ATAC-Seq]
GSE175452  [Hi-C]
GSE184566  [RNA-Seq]

但是我看了看数据集:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160148  ,以及其数据分析结果在文章里面的图表,居然发现它总共是16个10X单细胞样品分成两组,也是人民币伍拾万的费用啊!居然就做一个降维聚类分群并且展示了一下!

就做一个降维聚类分群

这个图首先并不是在主图里面,而是 Extended Data Fig. 5 ,其次,它仅仅是 图d的一半而已:

d, UMAP from the RNA or the ATAC–seq data (left). Log-normalized and scaled MYC RNA expression (top right) and MYC accessibility scores (bottom right) were visualized on the ATAC–seq UMAP, showing cell-level heterogeneity in MYC RNA-seq and ATAC-seq signals in ecDNA- containing COLO320-DM.

上半部分是单细胞转录组数据的降维聚类分群,下半部分是 单细胞ATAC的结果,大家感兴趣可以去看原文!

非常容易下载其表达量矩阵文件,并且读入到R里面,安装我们的标准 代码进行降维聚类分群,跟文章进行对比!

GSE160148_scRNA_COLO320.mtx.gz 1.1 Gb (ftp)(http) MTX
GSE160148_scRNA_COLO320_barcodes.tsv.gz 523.0 Kb (ftp)(http) TSV
GSE160148_scRNA_COLO320_features.tsv.gz 200.3 Kb (ftp)(http) TSV

以前我们做了一个投票:可视化单细胞亚群的标记基因的5个方法,下面的5个基础函数相信大家都是已经烂熟于心了:

  • VlnPlot(pbmc, features = c("MS4A1", "CD79A"))
  • FeaturePlot(pbmc, features = c("MS4A1", "CD79A"))
  • RidgePlot(pbmc, features = c("MS4A1", "CD79A"), ncol = 1)
  • DotPlot(pbmc, features = unique(features)) + RotatedAxis()
  • DoHeatmap(subset(pbmc, downsample = 100), features = features, size = 3)

其实这个文章配图的右边就是简单的 FeaturePlot 去可视化 MYC这个基因的表达量,至于配图的左边就是降维聚类分群而已!


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存