图3:(a)不同温度下的Ids-Vds曲线。插图:三个连续的载流子输运过程(注入,电离,和收集)。(b)击穿电压(Vbd)和增益随温度的变化关系。InSe/Ti肖特基结反向偏压时,(c)Ids-Vds特性曲线和(d)击穿电压(Vbd)和增益随温度的变化关系。 进一步,合作研究团队在接近本征带隙的击穿电压下实现了高增益。如图3a所示,随着温度升高,雪崩击穿电压不断的降低,在温度为260 K时,雪崩击穿电压为1.8 V,这与理论预言值一致。同时,合作研究团队发现载流子收集端势垒高度会影响击穿电压和增益对温度的依赖特性(图3b-3d),并指出,这种特性关系主要来源于温度依赖的碰撞电离过程与热辅助载流子收集过程的共同作用。 该工作揭示了层状范德华半导体材料与传统共价键半导体材料中电荷碰撞电离机制的内在区别,有望为未来开发低能耗、高灵敏的雪崩探测器提供全新的思路。 相关研究工作以“Approaching the Intrinsic Threshold Breakdown Voltage and Ultrahigh Gain in a Graphite/InSe Schottky Photodetector”(在石墨/硒化铟肖特基光电探测器中实现了本征击穿电压和超高增益)为题于 2022年10月17日在线发表在Advanced Materials上(DOI: 10.1002/adma.202206196)。 南京大学物理学院博士生张智依、南京理工大学理学院程斌教授、新加坡科技与设计大学Jeremy Lim博士和南京大学高安远博士为论文的共同第一作者,南京大学物理学院缪峰教授、梁世军副教授、以及新加坡科技与设计大学Yee Sin Ang教授为该论文的共同通讯作者。该工作得到了国家优秀青年科学基金、国家自然科学基金重点/面上项目、中科院先导B、国家重点研发计划等项目的资助,以及固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心等的支持。 文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202206196