System.currentTimeMillis的性能真有如此不堪吗?
点击上方蓝色字体,选择“标星公众号”
优质文章,第一时间送达
关注公众号后台回复pay或mall获取实战项目资料+视频
作者:围军儿来源:juejin.im/post/6887743425437925383作者:围军儿
疑惑,System.currentTimeMillis真有性能问题?
最近我在研究一款中间件的源代码时,发现它获取当前时间不是通过System.currentTimeMillis,而是通过自定义的System.currentTimeMillis的缓存类(见下方),难道System.currentTimeMillis的性能如此不堪吗?竟然要通过自定义的缓存时钟取而代之?
/**
* 弱精度的计时器,考虑性能不使用同步策略。
*
* @author mycat
*/
public class TimeUtil {
//当前毫秒数的缓存
private static volatile long CURRENT_TIME = System.currentTimeMillis();
public static final long currentTimeMillis() { return CURRENT_TIME; }
public static final long currentTimeNanos() { return System.nanoTime(); }
//更新缓存
public static final void update() { CURRENT_TIME = System.currentTimeMillis(); }
}
//使用定时任务调度线程池,定期(每1s)调用update方法更新缓存时钟
heartbeatScheduler.scheduleAtFixedRate(processorCheck(), 0L, 1000, TimeUnit.MILLISECONDS);
为了跟紧时代潮流,跟上性能优化“大师”们的步伐,我赶紧上网搜了一下“currentTimeMillis性能”,结果10个搜索结果里面有9个是关于system.currentTimeMillis性能问题的:
点开一看,这个说System.currentTimeMillis 比 new一个普通对象耗时还要高100倍左右,那个又拿出测试记录说System.currentTimeMillis并发情况下耗时比单线程调用高250倍
思索,System.currentTimeMillis有什么性能问题
看到这里,我恨不得马上打开IDEA,把代码里所有System.currentTimeMillis都给换掉,但是作为一个严谨的程序员,怎么能随波逐流,人云亦云呢?于是我仔细地拜读了这些文章,总结了他们的观点:
System.currentTimeMillis要访问系统时钟,这属于临界区资源,并发情况下必然导致多线程的争用 System.currentTimeMillis()之所以慢是因为去跟系统打了一次交道 我有测试记录,并发耗时就是比单线程高250倍!
但我细品一番,发现这些观点充满了漏洞:
System.currentTimeMillis 确实要访问系统时钟,准确的说,是读取墙上时间(xtime),xtime是Linux系统给用户空间用来获取当前时间的,内核自己基本不会使用,只是维护更新。而且读写xtime使用的是Linux内核中的顺序锁,而非互斥锁,读线程间是互不影响的
大家可以把顺序锁当成是解决了“ABA问题”的CompareAndSwap锁。对于一个临界区资源(这里是xtime),有一个操作序列号,写操作会使序列号+1,读操作则不会。
写操作:CAS使序列号+1
读操作:先获取序列号,读取数据,再获取一次序列号,前后两次获取的序列号相同,则证明进行读操作时没有写操作干扰,那么这次读是有效的,返回数据,否则说明读的时侯可能数据被更改了,这次读无效,重新做读操作。
大家可能有个疑问:读xtime的时候数据可能被更改吗?难度读操作不是原子性的吗?这是因为xtime是64位的,对于32位机器是需要分两次读的,而64位机器不会产生这个并发的问题。
跟系统打了一次交道,确实,用户进程必须进入内核态才能访问系统资源,但是,new一个对象,分配内存也属于系统调用,也要进内核态跟系统打交道,难道只是读一下系统的墙上时间,会比移动内存指针,初始化内存的耗时还要高100倍吗?匪夷所思
至于所谓的测试记录,给大家看一下他的测试代码:
这个测试代码的问题在于闭锁endLatch.countDown的耗时也被算进总体耗时了,闭锁是基于CAS实现的,在当前这样的计算密集型场景下,大量线程一拥而上,几乎都会因CAS失败而被挂起,大量线程挂起、排队、放下的耗时可不是小数目。其次使用这种方法(执行开始到执行完毕)来对比并发和单线程的调用耗时也有问题,单线程怎么和多线程比总的执行时间?能比的应该是每次调用的耗时之和才对(见下)
long begin = System.nanoTime();
//单次调用System.currrentTimeMillis()
long end = System.nanoTime();
sum += end - begin;记录每次调用的总耗时,这种方法虽然会把System.nanoTime()也算进总耗时里,但因为不论并发测试还是单线程测试都会记录System.nanoTime(),不会导致测试的不公平
数据说话,System.currentTimeMillis的性能没有问题
通过改进测试代码(测试代码见文末),并添加了优化“大师”们的缓存时钟做对比,我得到了以下数据:
次数\耗时\场景 | 单线程System | 单线程缓存时钟 | 200线程System | 200线程缓存时钟 |
---|---|---|---|---|
1w | 3.682 ms | 42.844 ms | 0.583 ms | 0.444 ms |
10w | 6.780 ms | 35.837 ms | 3.379 ms | 3.066 ms |
100w | 30.764 ms | 70.917 ms | 36.416 ms | 27.906 ms |
1000w | 263.287 ms | 427.319 ms | 355.452 ms | 261.360 ms |
System代表 System.currentTimeMillis
缓存时钟代表 使用静态成员变量做System.currentTimeMillis缓存的时钟类
200线程-Tomcat的默认线程数
使用JMH(Java基准测试框架)的测试结果
测试次数\平均耗时\场景 | System | 缓存时钟 |
---|---|---|
1w | 0.368 ± 0.667 微秒/次 | 0.578 ± 1.039 微秒/次 |
JMH按照推荐使用了双倍CPU的线程数(8线程),统计的是平均时间,测试代码见文末
测试结果分析
可以看到System.currentTimeMillis并发性能并不算差,在次数较少(短期并发调用)的情况下甚至比单线程要强很多,而在单线程调用时效率也要比缓存时钟要高一倍左右。实际环境中几乎是达不到上述测试中的多线程长时间并发调用System.currentTimeMillis这样的情况的,因而我认为没有必要对System.currentTimeMillis做所谓的“优化”
这里没有做“new一个对象”的测试,是因为并不是代码里写了new Object(),JVM就会真的会给你在堆内存里new一个对象。这是JVM的一个编译优化——逃逸分析:先分析要创建的对象的作用域,如果这个对象只在一个method里有效(局部变量对象),则属于未 方法逃逸,不去实际创建对象,而是你在method里调了对象的哪个方法,就把这个方法的代码块内联进来。只在线程内有效则属于未 线程逃逸,会创建对象,但会自动消除我们做的无用的同步措施。
最后
纸上得来终觉浅,绝知此事要躬行
想要学习JMH,请跟着GitHub官方文档走,别人的博客可能跑不通就搬上去了,笔者也是刚刚踩过了这个坑
最后奉上我的测试代码
测试代码:
public class CurrentTimeMillisTest {
public static void main(String[] args) {
int num = 10000000;
System.out.print("单线程"+num+"次System.currentTimeMillis调用总耗时: ");
System.out.println(singleThreadTest(() -> {
long l = System.currentTimeMillis();
},num));
System.out.print("单线程"+num+"次CacheClock.currentTimeMillis调用总耗时:");
System.out.println(singleThreadTest(() -> {
long l = CacheClock.currentTimeMillis();
},num));
System.out.print("并发"+num+"次System.currentTimeMillis调用总耗时: ");
System.out.println(concurrentTest(() -> {
long l = System.currentTimeMillis();
},num));
System.out.print("并发"+num+"次CacheClock.currentTimeMillis调用总耗时: ");
System.out.println(concurrentTest(() -> {
long l = CacheClock.currentTimeMillis();
},num));
}
/**
* 单线程测试
* @return
*/
private static long singleThreadTest(Runnable runnable,int num) {
long sum = 0;
for (int i = 0; i < num; i++) {
long begin = System.nanoTime();
runnable.run();
long end = System.nanoTime();
sum += end - begin;
}
return sum;
}
/**
* 并发测试
* @return
*/
private static long concurrentTest(Runnable runnable,int num) {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(200,200,60, TimeUnit.SECONDS,new LinkedBlockingQueue<>(num));
long[] sum = new long[]{0};
//闭锁基于CAS实现,并不适合当前的计算密集型场景,可能导致等待时间较长
CountDownLatch countDownLatch = new CountDownLatch(num);
for (int i = 0; i < num; i++) {
threadPoolExecutor.submit(() -> {
long begin = System.nanoTime();
runnable.run();
long end = System.nanoTime();
//计算复杂型场景更适合使用悲观锁
synchronized(CurrentTimeMillisTest.class) {
sum[0] += end - begin;
}
countDownLatch.countDown();
});
}
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
return sum[0];
}
/**
* 缓存时钟,缓存System.currentTimeMillis()的值,每隔20ms更新一次
*/
public static class CacheClock{
//定时任务调度线程池
private static ScheduledExecutorService timer = new ScheduledThreadPoolExecutor(1);
//毫秒缓存
private static volatile long timeMilis;
static {
//每秒更新毫秒缓存
timer.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
timeMilis = System.currentTimeMillis();
}
},0,1000,TimeUnit.MILLISECONDS);
}
public static long currentTimeMillis() {
return timeMilis;
}
}
}
使用JMH的测试代码:
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
//120轮预热,充分利用JIT的编译优化技术
@Warmup(iterations = 120,time = 1,timeUnit = TimeUnit.MILLISECONDS)
@Measurement(time = 1,timeUnit = TimeUnit.MICROSECONDS)
//线程数:CPU*2(计算复杂型,也有CPU+1的说法)
@Threads(8)
@Fork(1)
@State(Scope.Benchmark)
public class JMHTest {
public static void main(String[] args) throws RunnerException {
testNTime(10000);
}
private static void testNTime(int num) throws RunnerException {
Options options = new OptionsBuilder()
.include(JMHTest.class.getSimpleName())
.measurementIterations(num)
.output("E://testRecord.log")
.build();
new Runner(options).run();
}
/**
* System.currentMillisTime测试
* @return 将结果返回是为了防止死码消除(编译器将 无引用的变量 当成无用代码优化掉)
*/
@Benchmark
public long testSystem() {
return System.currentTimeMillis();
}
/**
* 缓存时钟测试
* @return
*/
@Benchmark
public long testCacheClock() {
return JMHTest.CacheClock.currentTimeMillis();
}
/**
* 缓存时钟,缓存System.currentTimeMillis()的值,每隔1s更新一次
*/
public static class CacheClock{
private static ScheduledExecutorService timer = new ScheduledThreadPoolExecutor(1);
private static volatile long timeMilis;
static {
timer.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
timeMilis = System.currentTimeMillis();
}
},0,1000,TimeUnit.MILLISECONDS);
}
public static long currentTimeMillis() {
return timeMilis;
}
}
}
有热门推荐👇
Spring Security 真正的前后分离实现
Docker安装Jenkins+Shell脚本自动化部署项目
Mybatis 使用的 9 种设计模式,真是太有用了
有热门推荐👇
Spring Security 真正的前后分离实现
Docker安装Jenkins+Shell脚本自动化部署项目
Mybatis 使用的 9 种设计模式,真是太有用了
最后分享一套微服务电商项目教程(资料笔记+视频):点击阅读全文获取面试资料+项目实战资料(电商/聚合支付)
SPringCloud微服电商完整务教程
1.框架搭建
- 电商项目介绍
- 微服务环境搭建
- 数据库搭建
2.分布式存储系统
- FastDFS原理讲解
- 文件上传
- 文件下载
3.商品发布
- 表结构梳理
- 代码生成器的使用
- 商品增删改
- 商品查询
4.lua,canal实现广告缓存
- 首页广告表设计
- Lua安装使用讲解
- Nginx限流实战
- Canal安装,原理介绍
- Canal同步数据实现
5.索引搜索
- ES安装讲解
- Kibana安装讲解
- DSL语句
- ES API使用
6.商品搜索
- ES 高级搜索功能
- ES 排序规则
7.Thymeleaf实现静态页面
- Thymeleat 缓存配置讲解
- 搜索页面讲解
8.微服务网关和Jwt令牌
- 微服务网关Zuul/Gateway介绍
- 网关之负载和限流
- 用户服务搭建
- JWT token讲解
- 网关鉴权
9.Spring Security Oauth2
- 单点登陆介绍
- Oauth2介绍
- 共钥私钥讲解
- 加密算法讲解
10.购物车
- 购物车分析和购物车种类分析
- 订单服务创建
- 购物车功能实现
11.订单
- 用户地址测试
- 下单问题分析,幂等
- 用户积分规则
- 二维码生产讲解
- 微信支付流程及模式讲解
12.微信支付
- 微信支付SDK使用讲解
- 微信支付状态查询
- 内网穿透 花生壳
- 微信支付回调
- rabbitMQ 延时队列讲解
13.秒杀基础
- 秒杀需求分析
- 秒杀服务搭建
- 秒杀之Redis
- 秒杀之多线程
14.秒杀核心
- 重复抢单下单问题
- 超卖问题
- 秒杀支付
15.分布式事物
- 分布式事物介绍
- CAP理论介绍
- 2pc/3pc 机制讲解
- TCC事物补偿
- Seata案列讲解
16.高可用集群
- 分布式和集群概念
- Eureka集群介绍
- Redis 集群介绍
- RabbitMq集群安装
点击阅读原文,前往上面微服务电商教程文档
点击阅读原文,前往上面微服务电商教程文档