其他
基于FPGA的图像处理
点击下方卡片,关注“新机器视觉”公众号
重磅干货,第一时间送达
图像处理FPGA 设计基本方法:1.阵列结构结合流水线处理设计例如RGB图像,包括三组数据,处理时需要并行三通道后,每个通道进行分别的串行流水处理。2.缓存设计帧缓存 行缓存 列对齐3.资源分辨率 处理窗口 对资源影响成倍增加 基于FPGA设计框架举例:1、灰度直方图统计直方图是图像的灰度分布统计的一种表示方法,统计目标图像中各个灰度点的像素个数,很多对于图像的调整算法都是基于此进行的;如何基于FPGA进行统计呢? 1)由于是统计图像的直方图,所以一定是统计结果会在图像经过之后才能产生,因此需要进行缓存; 缓存一:统计后的结果; 缓存二:经过统计处理器的图像数据,以便后面和直方图做同步处理。 2)图像常常用8位、24位、32位来表示一个像素的灰度值, 因此,统计种类分别为2^8=256/2^24=16777216/2^32=4294967296,地址位宽根据此进行选择设定; 根据不同的精度选择不同的缓存方式:片内或片外缓存;3)处理流程: 首先根据当前来的灰度值做为读RAM地址,读出RAM中对应灰度值的的统计值; 第二将读出结果加一并回写回RAM的当前地址中; 第三重复操作至当前图像处理结束; 第四下一幅图像到来之前顺序按灰度值从0到最大的顺序将最终结果读出; 第五读出最终结果后,将RAM清空。4)处理细节 定义参数 图像高度IH 图像宽度IW 像素逐行输入 因此以行同步脉冲的上升沿作为统计开始,行同步脉冲作为行统计计数器 行统计计数器达到最大高度时,作为统计结束标志。 2.灰度直方图均衡化处理1.统计出直方图,获取各个像素灰度累加和2.乘以均衡系数:(2^DW-1)/IW*IH(像素最大值/图像的面积)
用一个图像区域的各个像素的平均值来代替原图像的各个像素值,主要作用是减小锐度,减小噪声。 均值滤波一般出现在图像处理的预处理步骤, 预处理后,根据噪声来源,例如针对椒盐噪声做中值滤波处理,针对高斯噪声做高斯滤波处理 后续可能继续做边缘提取等复杂操作处理。 2)均值滤波器设计 设计一个滤波器可以理解成设计一个响应函数g(x,y)=Σi=-rrΣj=-rr I(x+i,y+j)) / (2r+1)2 数学公式很好理解,就是求一个窗口的所有像素灰度值之后后再除以整个窗口的面积也就是像素点个数,求出平均值; 均值滤波的方法将数据存储成3x3的矩阵,然后求这个矩阵。在图像上对目标像素给一个模板, 该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
1 //矩阵元素移位赋值
2 always @(posedge clk or negedge rst_n)begin
3 if(rst_n==1'b0)begin
4 {p_11,p_12,p_13} <= {5'b0,5'b0,5'b0} ;
5 {p_21,p_22,p_23} <= {15'b0,15'b0,15'b0};
6 {p_31,p_32,p_33} <= {15'b0,15'b0,15'b0};
7 end
8 else begin
9 if(per_href_ff0==1&&flag_do==1)begin
10 {p_11,p_12,p_13}<={p_12,p_13,row_1};
11 {p_21,p_22,p_23}<={p_22,p_23,row_2};
12 {p_31,p_32,p_33}<={p_32,p_33,row_3};
13 end
14 else begin
15 {p_11,p_12,p_13}<={5'b0,5'b0,5'b0};
16 {p_21,p_22,p_23}<={5'b0,5'b0,5'b0}
17 {p_31,p_32,p_33}<={5'b0,5'b0,5'b0}
18 end
19 end
20 end
21
22
23 always @(posedge clk or negedge rst_n)begin
24 if(rst_n==1'b0)begin
25 mean_value_add1<=0;
26 mean_value_add2<=0;
27 mean_value_add3<=0;
28 end
29 else if(per_href_ff1)begin
30 mean_value_add1<=p_11+p_12+p_13;
31 mean_value_add2<=p_21+ 0 +p_23;
32 mean_value_add3<=p_31+p_32+p_33;
33 end
34 end
35
36 wire [8:0]mean_value;//8位数之和
37 wire [5:0]fin_y_data; //平均数,除以8,相当于左移三位。
38
39 assign mean_value=mean_value_add1+mean_value_add2+mean_value_add3;
40 assign fin_y_data=mean_value[8:3];View Code 3)sobel算子 | -1 0 +1 |
Gx= | -2 0 +2 |
| -1 0 +1 |
| -1 -2 -1 |
Gy= | 0 0 0 |
| +1 +2 +1 | 包括X和Y两个方向的两套3X3矩阵,使其分别和图像的X和Y方向进行卷积计算(矩阵的卷积计算即将所有元素做乘加计算); 两个方向的卷积结果求平方根计算; 计算结果如果大于阈值则等于0xffff,如果小于阈值则等于0; 最终输出则是图像的边缘。 参考代码如下:由于算子简单以及有正负区分,因此需要做正值和负值分别计算后再进行相减计算。
//Gx= | -2 0 +2 |
// | -1 0 +1 |
//
// | -1 -2 -1 |
//Gy= | 0 0 0 |
// | +1 +2 +1 |
reg [8:0] p_x_data ,p_y_data ; // x 和 y 的正值之和
reg [8:0] n_x_data ,n_y_data ; // x 和 y 的负值之和
reg [8:0] gx_data ,gy_data ; //最终结果
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_x_data <=0;
n_x_data <=0;
gx_data <=0;
end
else if(per_href_ff1==1) begin
p_x_data <= p_13 + (p_23<<1) + p_33 ;
n_x_data <= p_11 + (p_12<<1 )+ p_13 ;
gx_data <= (p_x_data >=n_x_data)? p_x_data - n_x_data : n_x_data - p_x_data ;
end
else begin
p_x_data<=0;
n_x_data<=0;
gx_data <=0;
end
end
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_y_data <=0;
n_y_data <=0;
gy_data <=0;
end
else if(per_href_ff1==1) begin
p_y_data <= p_11 + (p_12<<1) + p_13 ;
n_y_data <= p_31 + (p_32<<1) + p_33 ;
gy_data <= (p_y_data >=n_y_data)? p_y_data - n_y_data : n_y_data - p_y_data ;
end
else begin
p_y_data <=0;
n_y_data <=0;
gy_data <=0;
end
end
//求平方和,调用ip核开平方
reg [16:0] gxy; // Gx 与 Gy 的平方和
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
gxy<=0;
end
else begin
gxy<= gy_data* gy_data + gx_data* gx_data ;
end
end
wire [8:0] squart_out ;
altsquart u1_altsquart ( //例化开平方的ip核
.radical (gxy),
.q (squart_out), //输出的结果
.remainder()
);
//与阈值进行比较
reg [15:0] post_y_data_r;
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
post_y_data_r<=16'h00;
end
else if(squart_out>=threshold)
post_y_data_r<=16'h00 ;
else
post_y_data_r<=16'hffff ;
end
中值滤波
将 3*3 滑动块中的灰度值进行排序,然后用排序的中间值取代 3*3 滑块中心的值。示意图如下图所示。来源/Hack电子、FPGA设计论坛
本文仅做学术分享,如有侵权,请联系删文。