AI浪潮下的产品经理该如何生存?
The following article is from 阿翘AKIU Author 阿翘在这里
近几年有两个事件让人工智能真正闯进大众的视线。
第一个是16年AlphaGo战胜李世石,成为第一个战胜世界围棋冠军的AI机器人,让大众首次见识到人工智能的威力,也让人工智能成为茶余饭后津津乐道的话题;
01
转变你的思考方式
在传统互联网时代,由于流量效应带来的红利,产品经理的工作主要是围绕着挖掘用户需求以及提升用户体验这两方面。
随着人工智能的发展,产品经理行业中出现了一个细分领域,称为AI产品经理。他们的工作围绕着AI技术在场景中的运用而展开,将AI能力作为一种强有力的武器解决问题,让产品功能具备AI能力从而实现用户体验与效率提升。
虽然两者在本质上都是满足用户的需求,但是在思维模式以及解决方式上存在很大的差异。具体表现在以下两个方面:
从用户思维到数据思维
认知升级 以往我们在传统产品上做创新有两种方式。 一种是将另一个领域的知识经验借鉴到另外一个领域,例如婴儿恒温箱最早是借鉴了动物园使用的恒温箱,从而创造出适合新生儿使用的产品;另一种是引用跨行业的新要素,让产品看起来依然是原来的产品,但它已经成为一个新的物种,例如朵亚朵亚酒店采用众筹这个新要素,这种消费转投资的方式让他们成为朵亚最忠诚的客户。
02
精细化、个性化、智能化的场景
因此,AI技术的特点也决定了AI产品的特点是:精细化、个性化、智能化的产品。产品在特定领域、特定场景中足够智能,并且充满人性化。
从更细分场景出发
发散式的交互
更聪明的解决方案
03
懂技术对产品经理的重要性
当前的产品市场中,技术领先但产品认可度较低的情况屡见不鲜,像投影键盘虽然很创新,但真正买单的人并不多。很多用户对新技术的采用并没有强烈的感知,导致企业在新技术的投入往往与其实现的商业价值不成正比。
因此AI产品经理的职责是找到技术与市场相匹配的地方,将核实的技术应用到核实的场景中,提供一套切实可行的人工智能解决方案,从而为用户创造更多的价值。我们都知道,技术与市场并非一成不变,两者都是处于动态演变的过程中,这一点在人工智能领域尤为明显。
技术的发展推动了新场景的出现。新技术的突破,让人们看到两个希望,一是原有一些应用场景可以被颠覆式优化,二是会创造出全新的应用场景,产生全新的市场。以往“想做但是没办法做”的场景以及“没想到可以这样做”的场景,可能只需要一两年的时间,就出现了更成熟的技术能够满足这个场景的需求。
例如图像识别是一项广泛应用在我们生活中的人工智能技术,在2012年以前,基于机器学习的图像识别技术的精确率并不高,所以在当时,图像识别只能用于车牌识别、符号识别这类简单的场景。
在2012年以后,随着深度学习技术的崛起,图像识别技术的精确率有巨大的提升,这时候我们尝试运用图像识别帮助我们做更多的事情,例如将人脸识别应用在考勤和车站人流检测的场景上,甚至是在畜牧业采用猪脸识别实现农场的智慧管理。
直到2015年,对抗生成网络技术将图像识别的精确率在一夜之间推到一个前所未有的高度,图像识别技术开始应用在鉴定、安防以及金融等对精度要求很高的领域,例如假钞验真、名画鉴定等专业场景。
由此可见,技术的发展存在阶段性,但是每个阶段,产品经理都能够为其找到合适的应用场景。因此,AI产品经理除了需要具备对市场的判断能力、对需求的分析能力以外,还需要掌握模型和算法的实现原理。这样才能更好地评估技术的可行性,评估算法在这个场景下能够达到的最优度,并根据内外部资源评估产品价值与技术实现之间的平衡点,让人工智能技术在产品中发挥出最大的价值。
AI产品经理应该熟悉常用的人工智能技术逻辑,主流算法的实现原理并关注技术的趋势与领先型。只有对技术有充分的了解,才能让产品经理在整个产品周期发挥自身最大的价值。
在需求调研阶段,产品经理能够评估哪些技术可以解决当下场景遇到的问题,并带来什么样的收益;
在开发阶段,产品经理关注现有数据与模型之间的匹配度,通过业务经验帮助工程师快速实现产品目标;
在应用阶段,产品经理需要评估算法的有效性甚至是可提升的空间,同时根据场景确定指标计算收益。在这个基础上,我们还可以挖掘新场景,尝试去做以往“做不到”的事情。
当然,我们说场景经理要懂AI技术,并非说要掌握整个算法的数学推导过程,而是要知道这个算法能做什么,不能做什么,为什么能做,以及天花板在哪里。这样才能确保产品能够在算法达不到100分的状态下充分发挥作用。
点击“阅读原文”
即可进行报名