查看原文
其他

漫画:理解 TCP 连接的实现后,客户端的并发也爆发了

Linux爱好者 2021-07-17

The following article is from 开发内功修炼 Author 张彦飞allen

(给Linux爱好者加星标,提升Linux技能

作者:开发内功修炼 / 张彦飞(本文来自作者投稿)

【导读】:上文讲了单台 Linux 能承载多少个 TCP 连接之后,本文继续给大家实操一下,看看我们在实际操作中,怎么去修改配置,又怎么让客户端和服务器一起把连接数提上去。


相信看了本文之后,大家对单台 Linux 能承载多少连接和TCP会有更深的了解。



echo "5000 65000" > /proc/sys/net/ipv4/ip_local_port_range

  • 连接1:192.168.1.101 5000 192.168.1.100 8090
  • 连接2:192.168.1.101 5001 192.168.1.100 8090
  • 连接N:192.168.1.101 ...  192.168.1.100 8090
  • 连接6W:192.168.1.101 65000 192.168.1.100 8090

//修改整个系统能打开的文件描述符为20W
echo 200000 > /proc/sys/fs/file-max


//修改所有用户每个进程可打开文件描述符为20W
#vi /etc/sysctl.conf
fs.nr_open=210000
#sysctl -p
#vi /etc/security/limits.conf
*  soft  nofile  200000
*  hard  nofile  200000

注意: limits中的hard limit不能超过nr_open, 所以要先改nr_open。而且最好是在sysctl.conf中改。避免重启的时候 hard limit生效了,nr_open不生效导致启动问题。



“socket中有一个主要的数据结构sock_common,在它里面有两个联合体。”

// file: include/net/sock.h
struct sock_common {
 union {
  __addrpair skc_addrpair; //TCP连接IP对儿 
  struct {
   __be32 skc_daddr;
   __be32 skc_rcv_saddr;
  };
 }; 
 union {
  __portpair skc_portpair; //TCP连接端口对儿
  struct {
   __be16 skc_dport;
   __u16 skc_num;
  };
 };
 ......
}

“其中skc_addrpair记录的是TCP连接里的IP对儿,skc_portpair记录的是端口对儿。”


“在网络包到达网卡之后,依次经历DMA、硬中断、软中断等处理,最后被送到socket的接收队列中了。”

“对于TCP协议来说,协议处理的入口函数是tcp_v4_rcv。我们看一下它的代码”

// file: net/ipv4/tcp_ipv4.c
int tcp_v4_rcv(struct sk_buff *skb)
{
 ......
 th = tcp_hdr(skb); //获取tcp header
 iph = ip_hdr(skb); //获取ip header

 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 ......
}

// file: include/net/inet_hashtables.h
static inline struct sock *__inet_lookup(struct net *net,
      struct inet_hashinfo *hashinfo,
      const __be32 saddr, const __be16 sport,
      const __be32 daddr, const __be16 dport,
      const int dif)
{

 u16 hnum = ntohs(dport);
 struct sock *sk = __inet_lookup_established(net, hashinfo,
    saddr, sport, daddr, hnum, dif);


 return sk ? : __inet_lookup_listener(net, hashinfo, saddr, sport,
          daddr, hnum, dif);
}

“先判断有没有连接状态的socket,这会走到__inet_lookup_established函数中”

struct sock *__inet_lookup_established(struct net *net,
      struct inet_hashinfo *hashinfo,
      const __be32 saddr, const __be16 sport,
      const __be32 daddr, const u16 hnum,
      const int dif)
{

 //将源端口、目的端口拼成一个32位int整数
 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 
 ......

 //内核用hash的方法加速socket的查找
 unsigned int hash = inet_ehashfn(net, daddr, hnum, saddr, sport); 
 unsigned int slot = hash & hashinfo->ehash_mask;
 struct inet_ehash_bucket *head = &hashinfo->ehash[slot];

begin:
 //遍历链表,逐个对比直到找到
 sk_nulls_for_each_rcu(sk, node, &head->chain) {
  if (sk->sk_hash != hash)
   continue;
  if (likely(INET_MATCH(sk, net, acookie,
          saddr, daddr, ports, dif))) {
   if (unlikely(!atomic_inc_not_zero(&sk->sk_refcnt)))
    goto begintw;
   if (unlikely(!INET_MATCH(sk, net, acookie,
       saddr, daddr, ports, dif))) {
    sock_put(sk);
    goto begin;
   }
   goto out;
  }
 }
}

// include/net/inet_hashtables.h
#define INET_MATCH(__sk, __net, __cookie, __saddr, __daddr, __ports, __dif) \
 ((inet_sk(__sk)->inet_portpair == (__ports)) &&  \
  (inet_sk(__sk)->inet_daddr == (__saddr)) &&  \
  (inet_sk(__sk)->inet_rcv_saddr == (__daddr)) &&  \
  (!(__sk)->sk_bound_dev_if ||    \
    ((__sk)->sk_bound_dev_if == (__dif)))  &&  \
  net_eq(sock_net(__sk), (__net)))

“在INET_MATCH中将网络包tcp header中的__saddr、__daddr、__ports和Linux中的socket中inet_portpair、inet_daddr、inet_rcv_saddr进行对比。如果匹配socket就找到了。当然除了ip和端口,INET_MATCH还比较了其它一些东东,所以TCP还有五元组、七元组之类的说法。”


# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 6.2 (Santiago)

# ss -ant | grep ESTAB |wc -l
1000013

# cat /proc/meminfo
MemTotal:        3925408 kB
MemFree:           97748 kB
Buffers:           35412 kB
Cached:           119600 kB
......
Slab:            3241528 kB




总结

客户端每建立一个连接就要消耗一个端口,所以很多同学当看到客户端机器上连接数一旦超过3W、5W就紧张的不行,总觉得机器要出问题了。

这篇文章的第一版也是很早就写出来了,不过飞哥又打磨了好长时间才算满意。在文中我们展示了一下 TCP socket的部分内核代码。通过源码来看:

TCP连接就是在客户机、服务器上的一对儿的socket。它们都在各自内核对象上记录了双方的ip对儿、端口对儿(也就是我们常说的四元组),通过这个在通信时找到对方。

TCP连接发送方在发送网络包的时候,会把这份信息复制到IP Header上。网络包带着这份信物穿过互联网,到达目的服务器。目的服务器内核会按照 IP 包 header 中携带的信物(四元组)去匹配找到正确的socket(连接)。

在这个过程里我们可以看到,客户端的端口只是这个四元组里的一元而已。哪怕两条连接用的是同一个端口号,只要客户端ip不一样,或者是服务器不一样都不影响内核正确寻找到对应的连接,而不会串线!

所以在客户端增加TCP最大并发能力有两个方法。第一个办法,为客户端配置多个ip。第二个办法,连接多个不同的server。

不过这两个办法最好不要混用。因为使用多 IP 时,客户端需要bind。一旦bind之后,内核建立连接的时候就不会选择用过的端口了。bind函数会改变内核选择端口的策略~~

最后我们亲手实验证明了客户端也可以突破百万的并发量级。相信读过此文的你,以后再也不用再惧怕65535这个数字了。


- EOF -

推荐阅读  点击标题可跳转

1、图解 Linux 网络包接收过程

2、Linux 网络包接收过程的监控与调优

3、计算机网络基础知识总结


看完本文有收获?请分享给更多人

推荐关注「Linux 爱好者」,提升Linux技能

点赞和在看就是最大的支持❤️

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存