TensorFlow Federated (TFF)框架可用于去中心化(decentralized)数据的机器学习及运算实验。它实现了联邦学习(Federated Learning,FL)方法,将为开发者提供分布式机器学习,以便在没有数据离开设备的情况下,在多种设备上训练共享的 ML 模型。其中,它通过加密方式提供多一层的隐私保护,并且设备上模型训练的权重与用于连续学习的中心模型共享。开源地址:https://github.com/tensorflow/federated
5、MediaPipe 【Stars:3.5K】
MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。谷歌的一系列重要产品如 YouTube、Google Lens、ARCore、Google Home 以及 Nest 都已深度整合了 MediaPipe。开源地址:https://github.com/google/mediapipe
6、TensorNetwork【Stars:879】
谷歌 X 实验室与加拿大 Perimeter 理论物理研究所(Perimeter Institute for Theoretical Physics )的研究人员合作开发了张量网络 TensorNetwork,以 TensorFlow 作为后端,针对 GPU 处理进行了优化。与在 CPU 上计算工作相比,可以实现高达 100 倍的加速。这是一个全新的开源库,旨在提高张量计算效率。开源地址:https://github.com/google/tensornetwork
微众银行AI团队开源的联邦学习框架。联盟学习开源项目FATE(Federated AI Technology Enabler),提供了一种基于数据隐私保护的安全计算框架,为机器学习、深度学习、迁移学习算法提供强有力的安全计算支持。安全底层支持同态加密、秘密共享、哈希散列等多种多方安全计算机制,算法层支持多方安全计算模式下的逻辑回归、Boosting、联邦迁移学习等。该框架可以帮助学术研究人员快速开发算法原型;为工业界人员快速开发应用提供一种简洁有效的解决方案,支持在多场景下的开拓和应用;借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU)和设备(桌面设备、服务器集群、移动设备等)开源地址:https://www.fedai.org.cn/cn/https://github.com/FederatedAI/FATE