查看原文
其他

新型水系钠离子电池:高倍率、超长寿命、工作全天候

ScienceBulletin ScienceBulletin 2022-10-01

论文概述


1

导读

水系钠离子电池在大规模储能应用方面得到了广泛的研究, 但是其循环稳定性较差(<3000次循环), 工作温度范围窄, 且许多报道高倍率性能是基于电极低活性物质负载量下(<3 mg cm2)实现的. 科研人员提出一种新型水系钠离子电池, 其采用镍基普鲁士蓝(NiHCF)正极, 羰基有机化合物,5,7,12,14-并五苯四酮(PT)负极和盐包水电解液(17 mol kg1 NaClO4).该全电池的反应机理涉及 PT 负极的可逆配位反应和 NiHCF正极中 Na+的嵌入/脱出. 而且, PT负极和NiHCF正极宽阔的内部空间可以有效地缓冲Na+储存引起的体积变化, 实现快速动力学. 该全电池表现出50 A g1 (对应于6.3s内放电或充电)的类似超级电容器的倍率性能, 以及超长的循环寿命(15000). 即使在高活性物质负载量(15 mgNiHCF cm28 mgPT cm2)的情况下, 仍可表现出优异的电化学性能. 特别是, 该电池可以在40~100°C的宽温度范围内工作, 表现出全天候工作特征.

2

图文速览 

Figure 1  (a) SEM, (b) TEM, (c) FT-IR spectrum, (d) XRD pattern, (e) crystal structure and (f) HOMO and LOMO energy levels of PT.

Figure 2  (a) CV curves of PT electrode. (b) lg(i)–lg(v) plots of the peaks (1−6) derived from the CV curves. (c, d) Rate performance of the PT electrode measured from 0.2 to 50 A g−1. (e) Long-cycle performance of the PT electrode measured at 10 A g−1.

Figure 3  (a) EDS mapping of elemental distributions (C, O, Na) on PT electrode: (I) pristine, (II) discharged (−0.9 V) and (III) charged (0.2 V) states. (b) Ex-situ FT-IR spectra of PT electrode at different discharge−charge states corresponding to the indicated points a−f on the left discharge−charge curves of PT electrode at 0.2 A g−1. Ex-situ XPS spectra of (c) C 1s and (d) Na 1s from PT electrode at pristine, discharged (−0.9 V) and charged (0.2 V) states. (e) Optimized molecular structures and relative binding energies of PT−2Na and PT−4Na.

Figure 4  (a) TEM, and (b) EDS mapping of NiHCF. (c) Rate performance of the NiHCF electrode measured from 0.1 to 20 A g−1. (d) Cycle performance of NiHCF electrode at 2 A g−1Ex-situ XPS spectra of (e) Fe 2p and (f) Ni 2p spectra from NiHCF electrode.

Figure 5  (a) Rate performance of the NiHCF//PT full cell measured from 0.2 to 50 A gPT−1. (bRagone plot. (c) Cycle performance of the NiHCF//PT full cell at 5 A gPT−1.

Figure 6  (a) DSC measurement of the 17 mol kg−1 NaClO4 electrolyte. (b) Galvanostatic discharge−charge curves of the NiHCF//PT full cell from 25 to 100 °C at 5 A gPT−1 and (c) from −10 to −40 °C at 0.5 A gPT−1. (d) Rate performance of the full cell at −40 °C.


3

文章信息 

Yu Zhang, Jie Xu, Zhi Li, Yanrong Wang, Sijia Wang, Xiaoli Dong, Yonggang Wang. All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte. Science Bulletin, 2022, 67(2): 161–170, doi:10.1016/j.scib.2021.08.010


4

相关阅读 

Keshuang Cao, Qianli Ma, Frank Tietz, Ben Bin Xu, Mi Yan, Yinzhu Jiang. A robust, highly reversible, mixed conducting sodium metal anode. Science Bulletin, 2021, 66(2): 179–186, doi:10.1016/j.scib.2020.06.005


Shiqi Liu, Haijun Yu. Toward functional units constructing Mn-based oxide cathodes for rechargeable batteries. Science Bulletin, 2021, 66(13): 1260–1262, doi:10.1016/j.scib.2021.04.005


Ping Xiao, Lanlan Xue, Yanpeng Guo, Lintong Hu, Can Cui, Huiqiao Li, Tianyou Zhai. On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Science Bulletin, 2021, 66(6): 545 –552, doi:10.1016/j.scib.2020.10.017

 

Feilong Qiu, Siyun Ren, Xueping Zhang, Ping He, Haoshen Zhou. A high efficiency electrolyte enables robust inorganic-organic solid electrolyte interfaces for fast Li metal anode. Science Bulletin, 2021, 66(9): 897–903, doi: 10.1016/j.scib.2021.01.007


Xiaolin Hu, Gan Luo, Xiaolong Guo, Qiannan Zhao, Ronghua Wang, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Science Bulletin, 2021, 66(7): 708–719, doi: 10.1016/j.scib.2020.11.009




您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存