查看原文
其他

全无机Sb2(S, Se)3太阳能电池:效率9.24%

SciBull ScienceBulletin 2022-10-01

论文概述


1

导读

近年, 锑硫化合物(Sb2SxSe3x, 0 < x< 3)已迅速成为太阳能电池中的新型吸光材料研究热点. 然而, 高效(超过9%)的锑基太阳能电池通常是使用昂贵且稳定性差的有机空穴传输层(HTL, Spiro-OMeTAD). 因此, 开发成本低且稳定性好的新型无机HTL迫在眉睫. 研究人员利用热蒸法制备MnS薄膜, 并利用它作为HTL构建Sb2(S, Se)3太阳能电池. 研究表明, 在空气中低温退火有利于MnSSb2(S,Se)3形成更好的能带匹配, 从而实现空穴有效提取. 基于此, 研究人员制备得到迄今为止最高效率(9.24%)的全无机Sb2(S,Se)3太阳能电池.

2

图文速览 

Scheme 1  The schematic illustration of the fabrication processes for an MnS HTL-based Sb2(S,Se)solar cell, and the schematic illustration of the MnS film deposition using thermal evaporation method in a vacuum is depicted at the center.

Figure 1  (a) Across-sectional SEM image of the MnS-based Sb2(S,Se)3 solar cell. (b) The JV  curves of the Sb2(S,Se)solar cells based on Spiro HTL and the MnS HTL with or without annealing in air. (c) The summarized PCEs of related researches on inorganic Sb-based solar cells.

Figure 2  (a) The Crystalline structure of MnS. Gaussian fitted high-resolution XPS spectra corresponding to (b) S 2p, (c) Mn 2p, and (d) O 1s of the MnS film with or without annealing, respectively. (e) The energy level diagram of the various layers in Sb2(S,Se)3 solar cells with the structure of FTO/CdS/Sb2(S,Se)3/HTL/Au (HTL = MnS W, MnS W/O, and Spiro).

Figure 3  (a) EQE spectrum of Sb2(S,Se)3 solar cells based on HTL of Spiro, MnS with or without annealing. (b) TAS decay kinetics at 630 nm of Sb2(S,Se)3, Sb2(S,Se)3/Spiro, Sb2(S,Se)3/Mn W, and Sb2(S,Se)3/MnS W/O films deposited on the FTO/CdS. (c) The dependence of VOC on the intensity of light. (d) Nyquist plots, (e) dark JV curves, and (f) the Mott–Schottky plots of devices based on MnS HTL with and without annealing, and the SpiroHTL.

Figure 4  The JV  curves of (a) MnS-based and (b) Spiro-based devices,  and (c) the corresponding normalized PCEs measured at the beginning and after storage in ambient air for 45 days.

3

文章信息 

Shaoying Wang, Yuqi Zhao, Liquan Yao, Chuang Li, Junbo Gong, Guilin Chen, Jianmin Li, Xudong Xiao. Efficient and stable all-inorganic Sb2(S, Se)3 solar cells via manipulating energy levels in MnS hole transporting layers. Science Bulletin, 2022, 67(3): 263–269; doi:10.1016/j.scib.2021.11.012


4

相关阅读 

Chengbo Tian, German Betancourt-Solis, Ziang Nan, Kaikai Liu, Kebin Lin, Jianxun Lu, Liqiang Xie, Luis Echegoyen, Zhanhua Wei. Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds. Science Bulletin, 2021, 66(4): 339–346; doi: 10.1016/j.scib.2020.08.041


Linbao Guo, Jiangjian Shi, Qing Yu, Biwen Duan, Xiao Xu, Jiazheng Zhou, Jionghua Wu, Yusheng Li, Dongmei Li, Huijue Wu, Yanhong Luo, Qingbo Meng. Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells. Science Bulletin, 2020, 65(9): 738–746; doi: 10.1016/j.scib.2020.01.005


Zhimin Fang, Qiang Zeng, Chuantian Zuo, Lixiu Zhang, Hanrui Xiao, Ming Cheng, Feng Hao, Qinye Bao, Lixue Zhang, Yongbo Yuan, Wu-Qiang Wu, Dewei Zhao, Yuanhang Cheng, Hairen Tan, Zuo Xiao, Shangfeng Yang, Fangyang Liu, Zhiwen Jin, Jinding Yan, Liming Ding. Perovskite-based tandem solar cells. Science Bulletin, 2021, 66(6): 621–636; doi: 10.1016/j.scib.2020.11.006




您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存