聚焦有机太阳能电池稳定性提升
论文概述
1
关键词
Photo-stability;
Work function;
Cathode interlayer;
Hyperbranched polymer;
Organic solar cell;
2
导读
较差的稳定性是限制有机太阳能电池产业化的主要因素之一. 传统阴极界面对稠环电子受体具有严重的化学反应活性或光催化活性, 限制了高效有机太阳能电池稳定性的提升. 研究人员使用苝四甲酸二酐对乙氧基化聚乙烯亚胺(PEIE)的残留伯氨基端基封端, 得到具有超支化结构的聚合物阴极界面材料PDIEIE. 该超支化界面修饰氧化铟锡透明电极后, 能有效降低电极功函数, 实现器件较高的光电转化效率. 更重要的是, PDIEIE作为阴极界面材料, 相对于金属氧化物界面材料对稠环电子受体没有光催化活性, 其相对于PEIE表现出显著抑制的化学反应活性, 因此有效提升了有机太阳能电池的稳定性, 并保持了器件较高的光电转化效率.
3
图文速览
Figure 1 (a) The diagram of synthesizing PDIEIE. (b) The FT-IR spectra of PTCDA, PEIE and PDIEIE on KBr chips. (c) The transmittance of PDIEIE, SnO2 and ZnO film on glass. (d) UPS spectra of bare ITO and PDIEIE modified ITO.
Figure 2 (a) Scheme of degradation processes: the photo-oxidation reaction on the metaloxides surface, and the Michael addition reactions in the base condition for typical FREAs. (b) The UV-stability of Y6 film deposited on different substrates under strong UVA-340 illumination in air. (c) The chemical stability of Y6 in chlorobenzene solvent with PEIE or PDIEIE.
Figure 3 (a) The photo-stability test for PM6:Y6 device without encapsulation under UVA-340 light at 5 mW cm−2, or (b) under white light at 100 mW cm−2 in air. (c) The photo-stabilitytest for encapsulated PTB7-Th:IEICO-4F device under white light at 100 mW cm−2 intensity in air. The average data and standard deviations derived frommultiple devices (3–6) were shown in Figures.
4
文章信息
Yawen Li, Tengfei Li, Jiayu Wang, Xiaowei Zhan, Yuze Lin. Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67(2): 171–177; doi: 10.1016/j.scib.2021.09.013
5
相关阅读
Tan Wang, Jianqiang Qin, Zuo Xiao, Xianyi Meng, Chuantian Zuo, Bin Yang, Hairen Tan, Junliang Yang, Shangfeng Yang, Kuan Sun, Suyuan Xie, Liming Ding. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Science Bulletin, 2020, 65(3): 179–181, doi: 10.1016/j.scib.2019.11.030
Xiang Xu, Jingyang Xiao, Guichuan Zhang, Long Wei, Xuechen Jiao, Hin-Lap Yip, Yong Cao. Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years. Science Bulletin, 2020,65(3): 208–216, doi: 10.1016/j.scib.2019.10.019
Qishi Liu, Yufan Jiang, Ke Jin, Jianqiang Qin, Jingui Xu, Wenting Li, Ji Xiong, Jinfeng Liu, Zuo Xiao, Kuan Sun, Shangfeng Yang, Xiaotao Zhang, Liming Ding. 18% efficiency organic solar cells. Science Bulletin, 2020, 65(4): 272–275, doi: 10.1016/j.scib.2020.01.001
Qicong Li, Yang Sun, Cheng Yang, Kong Liu, Md. Rasidul Islam, Long Li, Zhijie Wang, Shengchun Qu. Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7%. Science Bulletin, 2020, 65(9): 747–752, doi: 10.1016/j.scib.2019.12.021
Jianqiang Qin, Lixiu Zhang, Zuo Xiao, Shanshan Chen, Kuan Sun, Zhigang Zang, Chenyi Yi, Yongbo Yuan, Zhiwen Jin, Feng Hao, Yuanhang Cheng, Qinye Bao, Liming Ding. Over 16% efficiency from thick-film organic solar cells. Science Bulletin, 2020, 65(23): 1979–1982, doi: 10.1016/j.scib.2020.08.027
Zhimin Fang, Qiang Zeng, Chuantian Zuo, Lixiu Zhang, Hanrui Xiao, Ming Cheng, Feng Hao, Qinye Bao, Lixue Zhang, Yongbo Yuan, Wu-Qiang Wu, Dewei Zhao, Yuanhang Cheng, Hairen Tan, Zuo Xiao, Shangfeng Yang, Fangyang Liu, Zhiwen Jin, Jinding Yan, Liming Ding. Perovskite-based tandem solar cells. ScienceBulletin, 2021, 66(6): 621–636, doi: 10.1016/j.scib.2020.11.006
Zhihao Chen, Hang Yin, Zhenchuan Wen, Shu Kong So, Xiaotao Hao. Organic indoor light harvesters achieving recorded output power over 500% enhancement under thermal radiated illuminances. Science Bulletin, 2021, 66(16): 1641−1648, doi: 10.1016/j.scib.2021.04.010
Chang Liu, Lei Huang, Xianyong Zhou, Xingzhu Wang, Jianxi Yao, Zhike Liu, Shengzhong Frank Liu, Wanli Ma, Baomin Xu. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Science Bulletin, 2021, 66(14): 1419−1428, doi: 10.1016/j.scib.2021.03.018