三明治夹层结构设计实现外量子效率超过20%的发光场效应晶体管
论文
20
22
速递
Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure
Lingmei Kong, Jialong Wu, Yunguo Li, Fan Cao, Feijiu Wang, Qianqian Wu, Piaoyang Shen, Chengxi Zhang, Yun Luo, Lin Wang, Lyudmila Turyanska, Xingwei Ding, Jianhua Zhang, Yongbiao Zhao, Xuyong Yang
Science Bulletin, 2022,67(5): 529–536
doi: 10.1016/j.scib.2021.12.013
01
简介
02
图文速览
Fig. 1 Device structure of QLEFETs with an emission layer of CdSe/ZnS QDs. (a) Schematic diagram of the device structure, (b) cross-sectional SEM image and (c) EDS compositional mapping images of a QLEFET with a DQD sandwiched structure. The scale bars are 100 nm. The thicknesses of Al2O3, ZnO, and PEDOT:PSS layerare ~ 150, 80 and 60 nm, respectively. (d) Representative high-resolution TEM images of cross-sections of (left) QDs/PEIE/PEDOT:PSS and (right) ZnO/MABr/QDs heterostructures.
Fig. 2 Performance characterizationof QLEFETs. (a) Normalized PL and EL spectra of QLEFET with a DQD sandwich structure. Inset: thephotograph of the operating devices with (top) and without (bottom) the DQDstructure. The emitting area is 1 mm × 0.05 mm at VGS = −50 V. The scale bar is 400 μm. (b) Electrical transfer characteristicsof the QLEFETs. (c) Mott-Schottky plots of the control and QLEFETs with DQD structure. (d) Luminance (L)–VGS and (e) EQE–VGS of the QLEFETs. (f) Histogram of the maximum EQEs measured on 20 devices.
Fig. 3 Assessment of morphology and energy level alignment of the QD films. AFM images and a representative z-profile of (a) ZnO, (b) QDs and (c) QDs/PEIE films. UPS spectrain (d) secondary electron regionand (e) frontier electronic structure region of the QDs and the QDs/PEIE films. (f) Schematic diagram of energy level alignment in the PEIE modified QD films, where Evac is the vacuum energy.
Fig. 4 Optical characteristics of the QDs/ZnO film and trap densities characteristics of the ZnO film. (a) PL spectra and (b) TRPL decay curves of the QDs, ZnO/QDs and ZnO/MABr/QDs films coated on the glass substrate. Spectra were acquired under excitation with 365 nm. (c) Ball-and-stick model of the top layer of (i) wurtzite ZnO(100) surface, (ii) ZnO (100) surface with adsorbed MABr, (iii) ZnO (100) surface with one Schottky defect and (iv) ZnO (100). surface with MABr adsorbed at the Schottky defect. (d) XPS spectra of the ZnO and ZnO/MABr films. (e) Current density (J)–V curves for devices with structures of ITO/ZnO/Al and ITO/ZnO/MABr/Al.
Fig. 5 Device structure and performance characterization of QLEDs. (a) Energy level diagram of the QLEDs. (b) Normalized EL and PL spectra, (c) J–V–L characteristics and (d) CE–J–EQE characteristics of QLEDs. Inset in (b): the photograph of the operating device with an emitting area of 2 mm × 2 mm at applied voltage of 7.5V.
03
本文通讯作者
王飞久 教授 河南大学光伏材料省重点实验室. 主要从事低维材料制备, 非线性光学表征, 及光电子器件研究; 包括碳纳米管、石墨烯、与新型二维材料的制备、光学表征、以及其在光伏电池,晶体管等光电子器件方面的研究.
丁星伟 副研究员 上海大学新型显示技术与应用集成教育部重点实验室. 主要从事基于原子层沉积技术的氧化物薄膜晶体管和薄膜封装方面的研究工作.
杨绪勇 教授 上海大学新型显示技术及应用集成教育部重点实验室. 主要从事发光材料与器件的研究, 尤其专长纳米发光材料与器件的研究.
04
相关阅读
超低亚阈值摆幅可重构晶体管新型自激活应力发光材料
混合Sn-Pb钙钛矿近红外发光二极管新进展
应力发光材料助力运动分析
激光二极管家族的新成员:电泵浦有机半导体激光器