查看原文
其他

用于伤口愈合的新型仿生水凝胶| Science Bulletin

文章

20

22

速递

Bio-inspired natural platelet hydrogels for wound healing

Yuanyuan Jiang, Jie Wang, Hui Zhang, Guopu Chen, Yuanjin Zhao

Science Bulletin, 2022, 67(17): 1776–1784

doi: 10.1016/j.scib.2022.07.032


简介

伤口愈合始终是一个基本的健康问题, 需要消耗大量人力和物力, 并造成经济负担. 受血小板止血功能的启发, 本文采用共价酰胺化方法将天然血小板与海藻酸盐交联, 制成一种新型的用于伤口愈合的仿生水凝胶. 血小板水凝胶具有良好的生物相容性和血液相容性. 通过改变血小板与海藻酸盐的添加比例, 以获得不同力学性能的水凝胶, 进而适应不同伤口环境. 此外, 银纳米颗粒可以被加载到水凝胶的空隙中, 这使复合材料具有更好的抗感染性能. 基于生物启发的血小板水凝胶可以有效解决急性组织损伤后的出血问题, 防止细菌增殖, 促进伤口愈合中的血管生成、胶原沉积和肉芽组织形成. 这些特征表明了生物仿生血小板水凝胶在临床应用中的潜在价值.


 

图文导读

Fig. 1  Mechanism of wound healing by the PLT hydrogel. (a) Schematic representation of PLTs’ physiological function: targeting an injured vascular site to promote hemostasis. (b) Hydrogel formation by crosslinking of PLT membrane and Na-Alg solution, and incorporation of AgNPs during fabrication. (c) Application of PLT hydrogel as wound dressing and its outcome.


Fig. 2  Photos of PLT hydrogels formation process. (b) SEM images of the composite hydrogel from different PLTM concentrations. (c) Frequency-dependent (at strain of 0.01%) oscillatory shear rheology and (d) strain amplitude sweep ( = 0.1%–1000%) at a fixed angular frequency (1.0 rad s1) of the hydrogels. Scale bar is 100. (i: PLTM = 30%, ii: PLTM = 40%, iii: PLTM = 50%, iv: PLTM = 60%, v: PLTM = 70%).


Fig. 3  (a) Schematic illustration of a hemostatic model in the sheared liver. (b–d) Images of the hemostasis by use of PBS (b), Ca-Alg hydrogel (c) and PLT hydrogel (d), respectively. (e, f) Blood loss (e) and hemostasis time (f) statistics of the three groups. NS, not significant; ** P < 0.01, ***P < 0.001.


Fig. 4  (a, b) Photographs of bacterial colonies of E. coli (a) and S. aureus (b) after contact with PBS (i), Ca-Alg hydrogel (ii), PLT/AgNPs(-) hydrogel (iii) and PLT hydrogel (iv). (c, d) Fluorescence staining images of E. coli (c) and S. aureus (d) treated by PBS (i), Ca-Alg hydrogel (ii), PLT/AgNPs(-) hydrogel (iii) and PLT hydrogel (iv). Live and dead bacteria were stained in green and red by SYTO and PI, respectively. (e, f) Bacteria reduction rate of four groups against E. coli (e) and S. aureus (f). Scale bars are 10 . NS, not significant; *** P < 0.001.


Fig. 5  (a) Images of skin wounds treated with PBS (i), Ca-Alg hydrogels (ii), and PLT hydrogels (iii) on the 0th, 3rd, 5th, and 7th days. (b) H&E staining of granulation tissue after 7 days at low magnification. The black arrows show granulation tissue thickness. (c) Corresponding double staining of and CD31 on the 7th day. The yellow arrows indicate neovascularization in different groups. (d–f) Corresponding quantitative analysis of means wound area (d), granulation tissue thickness (e) and the blood vessel density (f) in each group. The scale bars are 0.2 cm in (a), 400  in (b), and 50 in (c), respectively. NS, not significant; 0.01 < *P < 0.05.


Fig. 6  Investigation of the biological mechanism of different treatments of the wound section: (a) immunohistochemistry of IL-6, (b) immunohistochemistry of . (c) Masson of trichrome staining. (d–f) Statistical analysis of the IL-6 (d), (e) and collagen deposition (f) in different groups. Scale bars are 40  in (a, b), and 50 in (c). NS, not significant; 0.01 < *P < 0.05, ** P < 0.01.


通讯作者



赵远锦  南京大学医学院附属鼓楼医院赵远锦教授. 研究兴趣: 生物材料与组织工程、仿生器官与器官芯片、微流控等。




栏目介绍

论文 Article

报道具创新性和重要科学意义的最新科研成果(一般不超过10个印刷面,附250字左右摘要,4-6个关键词,图表不超过10个,参考文献不超过60条)。


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存