其他
通过Spark生成HFile,并以BulkLoad方式将数据导入到HBase
通过HBase的put API进行数据的批量写入 通过生成HFile文件,然后通过BulkLoad方式将数据存入HBase
HBase的数据最终是以HFile的形式存储到HDFS上的,如果我们能直接将数据生成为HFile文件,然后将HFile文件保存到HBase对应的表中,可以避免上述的很多问题,效率会相对更高。
1.1 数据样例
{"id":"1","name":"jack","age":"18"}
{"id":"2","name":"mike","age":"19"}
{"id":"3","name":"kilos","age":"20"}
{"id":"4","name":"tom","age":"21"}
...
/**
* @Author bigdatalearnshare
*/
object App {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "root")
val sparkSession = SparkSession
.builder()
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.master("local[*]")
.getOrCreate()
val rowKeyField = "id"
val df = sparkSession.read.format("json").load("/people.json")
val fields = df.columns.filterNot(_ == "id").sorted
val data = df.rdd.map { row =>
val rowKey = Bytes.toBytes(row.getAs(rowKeyField).toString)
val kvs = fields.map { field =>
new KeyValue(rowKey, Bytes.toBytes("hfile-fy"), Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))
}
(new ImmutableBytesWritable(rowKey), kvs)
}.flatMapValues(x => x).sortByKey()
val hbaseConf = HBaseConfiguration.create(sparkSession.sessionState.newHadoopConf())
hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "hfile")
val connection = ConnectionFactory.createConnection(hbaseConf)
val tableName = TableName.valueOf("hfile")
//没有HBase表则创建
creteHTable(tableName, connection)
val table = connection.getTable(tableName)
try {
val regionLocator = connection.getRegionLocator(tableName)
val job = Job.getInstance(hbaseConf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
HFileOutputFormat2.configureIncrementalLoad(job, table, regionLocator)
val savePath = "hdfs://linux-1:9000/hfile_save"
delHdfsPath(savePath, sparkSession)
job.getConfiguration.set("mapred.output.dir", savePath)
data.saveAsNewAPIHadoopDataset(job.getConfiguration)
val bulkLoader = new LoadIncrementalHFiles(hbaseConf)
bulkLoader.doBulkLoad(new Path(savePath), connection.getAdmin, table, regionLocator)
} finally {
//WARN LoadIncrementalHFiles: Skipping non-directory hdfs://linux-1:9000/hfile_save/_SUCCESS 不影响,直接把文件移到HBASE对应HDFS地址了
table.close()
connection.close()
}
sparkSession.stop()
}
def creteHTable(tableName: TableName, connection: Connection): Unit = {
val admin = connection.getAdmin
if (!admin.tableExists(tableName)) {
val tableDescriptor = new HTableDescriptor(tableName)
tableDescriptor.addFamily(new HColumnDescriptor(Bytes.toBytes("hfile-fy")))
admin.createTable(tableDescriptor)
}
}
def delHdfsPath(path: String, sparkSession: SparkSession) {
val hdfs = FileSystem.get(sparkSession.sessionState.newHadoopConf())
val hdfsPath = new Path(path)
if (hdfs.exists(hdfsPath)) {
//val filePermission = new FsPermission(FsAction.ALL, FsAction.ALL, FsAction.READ)
hdfs.delete(hdfsPath, true)
}
}
}
Caused by: java.io.IOException: Added a key not lexically larger than previous. Current cell = 1/hfile-fy:age/1588230543677/Put/vlen=2/seqid=0, lastCell = 1/hfile-fy:name/1588230543677/Put/vlen=4/seqid=0
2. 批量put
2.1数据样例
val rowKeyField = "id"
val df = sparkSession.read.format("json").load("/stats.json")
val fields = df.columns.filterNot(_ == "id")
df.rdd.foreachPartition { partition =>
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "batch_put")
val conn = ConnectionFactory.createConnection(hbaseConf)
val table = conn.getTable(TableName.valueOf("batch_put"))
val res = partition.map { row =>
val rowKey = Bytes.toBytes(row.getAs(rowKeyField).toString)
val put = new Put(rowKey)
val family = Bytes.toBytes("hfile-fy")
fields.foreach { field =>
put.addColumn(family, Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))
}
put
}.toList
Try(table.put(res)).getOrElse(table.close())
table.close()
conn.close()
}
val hbaseConf = sparkSession.sessionState.newHadoopConf()
hbaseConf.set("hbase.zookeeper.quorum", "linux-1:2181,linux-2:2181,linux-3:2181")
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, "direct")
val job = Job.getInstance(hbaseConf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])
val rowKeyField = "id"
val df = sparkSession.read.format("json").load("/stats.json")
val fields = df.columns.filterNot(_ == "id")
df.rdd.map { row =>
val put = new Put(Bytes.toBytes(row.getAs(rowKeyField).toString))
val family = Bytes.toBytes("hfile-fy")
fields.foreach { field =>
put.addColumn(family, Bytes.toBytes(field), Bytes.toBytes(row.getAs(field).toString))
}
(new ImmutableBytesWritable(), put)
}.saveAsNewAPIHadoopDataset(job.getConfiguration)
以上主要介绍了3种利用Spark将数据导入HBase的方式。其中,通过生成HFile文件,然后以BulkLoad导入的方式更适合于大数据量的操作。
深入探讨HBASE
HBase高级特性、rowkey设计以及热点问题处理
HBase中Memstore存在的意义以及多列族引起的问题和设计
Hive数据导入HBase引起数据膨胀引发的思考