查看原文
其他

用户画像方法论

用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。

既然用户体验非常重要,那如何去「度量」和「优化整个流程」呢,那就是站在「用户角度」收集其在各个模块的数据,并利用「统计」、「概率」思维「建模分析」;在产品运营、增长过程中找到「雪球效应」的「撬动点」施以影响,最终建立起「良性的闭环」。

落地用户画像,对用户和企业来讲,可以实现双赢。用户在使用产品的时候,可以获得更好的购物体验,企业可以更好地为用户服务,从而实现赢利。要结合业务场景去分析,然后去不要单看画像,而是要做一些对比,通过前后对比,跟竞品的对比,跟频道内与大盘的对比等手段去分析,发现不足和优势,做纠正和调整。通过数据反馈形成数据的闭环,最终在产品的迭代过程中拿到更好的业务结果。
总结一下,做画像要「有目标要有数据」,「也不拘泥于技术细节」,「大胆的尝试」,然后「先粗粒度」,「后细粒度」。


推荐文章:

数据分析之数据预处理、分析建模、可视化

推荐系统之标签体系

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存