查看原文
其他

年度回顾:2018年度机器学习50大热门网文

云栖社区 2019-04-22

云栖君导读:本文总结了2018年期间机器学习博客top50篇,在这个寒冬中给大家带来一点干粮。



新的一年新气象,总结过去一年,展望新的一年。站在巨人的肩膀上前行,肯定会事半功倍。因此,本文从2018年1月至12月期间挑选出近22,000篇机器学习文章,并进行比较,以挑选出能够提升2019年数据科学技能的前50名文章。


从概率上讲,这是一个极具竞争力的列表,概率仅为50 / 22,000(0.23%),且需要经过仔细挑选并与过去一年发布的机器学习文章进行对比。Mybridge AI通过考虑受欢迎程度、参与度和新近度以及其他人为因素来评估这些文章的质量。


本教程将50篇文章划分为16个相关组:



寒冬已至,请花些大量时间阅读过去一年中可能错过的顶级机器学习教程。如果想查看去年最好的机器学习系列文章,请点击这里。

https://medium.mybridge.co/learn-to-build-a-machine-learning-application-from-top-articles-of-2017-cdd5638453fc


深度视频


No. 1


Deepfakes与家庭乐趣,如何让自己妻子参加今夜秀——由Sven Charleer提供;



https://towardsdatascience.com/family-fun-with-deepfakes-or-how-i-got-my-wife-onto-the-tonight-show-a4454775c011?spm=a2c4e.11153940.blogcont683655.20.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 2


深度视频肖像:一种新颖的方法,只使用输入视频即可实现肖像视频的照片般逼真的重新动画——由Christian Theobalt提供;


https://web.stanford.edu/~zollhoef/papers/SG2018_DeepVideo/page.html%0A?spm=a2c4e.11153940.blogcont683655.21.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


人脸识别


No. 3


如何使用Python中的深度学习实现iPhone X的FaceID功能——Nouman Di PaloCourtesy;



https://towardsdatascience.com/how-i-implemented-iphone-xs-faceid-using-deep-learning-in-python-d5dbaa128e1d?spm=a2c4e.11153940.blogcont683655.22.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 4


使用OpenCV、Python和深度学习进行人脸识别——由Adrian Rosebrock提供;



https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning?spm=a2c4e.11153940.blogcont683655.23.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 5


前沿人脸识别很复杂,这些电子表格让它变得更容易——由 Dave Smith提供;



https://towardsdatascience.com/cutting-edge-face-recognition-is-complicated-these-spreadsheets-make-it-easier-e7864dbf0e1a?spm=a2c4e.11153940.blogcont683655.24.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


对象检测


No. 6


在Airbnb上分类列表照片:大规模深度学习模型正在改变我们在平台上思考家庭图像的方式——由Shijing Yao提供;



https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3?spm=a2c4e.11153940.blogcont683655.25.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 7


使用OpenCV进行YOLO对象检测——由Adrian Rosebrock提供;



https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv?spm=a2c4e.11153940.blogcont683655.26.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 8


使用10行代码实现对象检测——由Moses Olafenwa提供;



https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606?spm=a2c4e.11153940.blogcont683655.27.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


游戏AI


No. 9


游戏AI的初学者指南——由Kylotan提供;



https://www.gamedev.net/articles/programming/artificial-intelligence/the-total-beginners-guide-to-game-ai-r4942?spm=a2c4e.11153940.blogcont683655.28.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 10


基于预测奖励的强化学习——由Harri Edwards提供;



https://blog.openai.com/reinforcement-learning-with-prediction-based-rewards?spm=a2c4e.11153940.blogcont683655.29.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 11


Montezuma的复仇之路通过Go-Explore解决,这是一种新的解决困难探索问题的算法——由优步工程师提供;



https://eng.uber.com/go-explore?spm=a2c4e.11153940.blogcont683655.30.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 12


抢旗:代理如何在复杂的第一人称多人游戏中实现人类级别的表现,甚至可以与人类队友合作——由DeepMind提供;


https://deepmind.com/blog/capture-the-flag?spm=a2c4e.11153940.blogcont683655.31.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 13


OpenAI Five:在Dota 2游戏中击败业余人类玩家——由OpenAI提供;



https://blog.openai.com/openai-five?spm=a2c4e.11153940.blogcont683655.32.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


象棋


No. 14


AlphaZero:在国际象棋、将棋和围棋的盛大游戏中崭露头角——由DeepMind提供;



https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go?spm=a2c4e.11153940.blogcont683655.33.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 15


如何使用Python和Keras构建自己的AlphaZero AI——由David Foster提供;



https://medium.com/applied-data-science/how-to-build-your-own-alphazero-ai-using-python-and-keras-7f664945c188?spm=a2c4e.11153940.blogcont683655.34.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 16


简单解释:人工智能程序如何掌握围棋游戏的古老游戏——由Aman Agarwal提供;



https://medium.freecodecamp.org/explained-simply-how-an-ai-program-mastered-the-ancient-game-of-go-62b8940a9080?spm=a2c4e.11153940.blogcont683655.35.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


医疗


No. 17


深度学习在医学图像数据集中的不合理用处——由Luke Oakden-Rayner提供;



https://lukeoakdenrayner.wordpress.com/2018/04/30/the-unreasonable-usefulness-of-deep-learning-in-medical-image-datasets?spm=a2c4e.11153940.blogcont683655.36.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 18


利用基于DNA的胜者通吃神经网络扩大分子模式识别——由Kevin M. Cherry、Lulu Qian提供;



https://www.nature.com/articles/s41586-018-0289-6.epdf?spm=a2c4e.11153940.blogcont683655.37.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 19


针对脑核磁共振图像的深度学习方法——由Henrik Marklund提供;



https://medium.com/stanford-ai-for-healthcare/its-a-no-brainer-deep-learning-for-brain-mr-images-f60116397472?spm=a2c4e.11153940.blogcont683655.38.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


运动


No. 20


每个人都跳舞:一个简单的方法“跟我做”动作迁移——由Caroline Chan等人提供;


https://carolineec.github.io/everybody_dance_now?spm=a2c4e.11153940.blogcont683655.39.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 21


走向虚拟替身演员——由Xue Bin peng提供;


https://bair.berkeley.edu/blog/2018/04/10/virtual-stuntman?spm=a2c4e.11153940.blogcont683655.40.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 22


学习敏捷:一个真正的机器人手,使用与OpenAI Five相同的学习算法和代码进行训练,已经学习了类似于旋转物体的动作——由OpenAI提供;



https://blog.openai.com/learning-dexterity?spm=a2c4e.11153940.blogcont683655.41.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 23


在人工代理中使用类似网格的表示进行导航——由Andrea Banino等人提供;



https://deepmind.com/blog/grid-cells?spm=a2c4e.11153940.blogcont683655.42.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


Web&App


No. 24


如何使用CoreML、PyTorch和React Native在iOS上发布神经网络——由 Stefano等人提供;


https://attardi.org/pytorch-and-coreml?spm=a2c4e.11153940.blogcont683655.43.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 25


如何训练AI将设计模型转换为HTML和CSS——由Emil Wallner提供;



https://medium.freecodecamp.org/how-you-can-train-an-ai-to-convert-your-design-mockups-into-html-and-css-cc7afd82fed4?spm=a2c4e.11153940.blogcont683655.44.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


翻译


No. 26


通过更快的训练和推理将神经机器翻译成更大的数据集——由Michael Auli等人提供;


https://code.fb.com/ai-research/scaling-neural-machine-translation-to-bigger-data-sets-with-faster-training-and-inference?spm=a2c4e.11153940.blogcont683655.45.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 27


在翻译中找到:通过深入学习从头开始构建语言翻译——由Samuel Lynn-Evans等人提供;


https://blog.floydhub.com/language-translator?spm=a2c4e.11153940.blogcont683655.46.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 28


无监督机器翻译:为更多语言提供快速,准确翻译的新方法。由Facebook Research提供



https://code.fb.com/ai-research/unsupervised-machine-translation-a-novel-approach-to-provide-fast-accurate-translations-for-more-languages?spm=a2c4e.11153940.blogcont683655.47.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


NLP


No. 29


有关BERT、ELMo和co(如何NLP破解转移学习)的说明——由Jay Alammar提供


http://jalammar.github.io/illustrated-bert?spm=a2c4e.11153940.blogcont683655.48.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 30


注释迁移学习——由哈佛NLP组提供;



http://nlp.seas.harvard.edu/2018/04/03/attention.html?spm=a2c4e.11153940.blogcont683655.49.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 31


自然语言处理很有趣——由Adam Geitgey提供;


https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e?spm=a2c4e.11153940.blogcont683655.50.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


神经网络


No. 32


如何在Python中从头开始构建自己的神经网络——由James Loy提供;


https://towardsdatascience.com/how-to-build-your-own-neural-network-from-scratch-in-python-68998a08e4f6?spm=a2c4e.11153940.blogcont683655.51.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 33


使用简单的NumPy编写一个神经网络——由Piotr Skalski提供;



https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae7e74410795?spm=a2c4e.11153940.blogcont683655.52.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


CNN


No. 34


可区分的图像参数化:一种功能强大、探索不足的神经网络可视化和艺术工具——由distillpub提供;


https://distill.pub/2018/differentiable-parameterizations?spm=a2c4e.11153940.blogcont683655.53.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 35


特征转换——由distillpub提供;


https://distill.pub/2018/feature-wise-transformations?spm=a2c4e.11153940.blogcont683655.54.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 36


Keras和卷积神经网络(CNN——由Adrian Rosebrock提供;


https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns?spm=a2c4e.11153940.blogcont683655.55.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 37


可解释性的组成部分——由Distill提供;



https://distill.pub/2018/building-blocks?spm=a2c4e.11153940.blogcont683655.56.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 38


Rosetta:通过机器学习理解图像和视频中的文本——由Facebook Research提供;


https://code.fb.com/ai-research/rosetta-understanding-text-in-images-and-videos-with-machine-learning?spm=a2c4e.11153940.blogcont683655.57.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 39


一个有趣的卷积神经网络失败案例和协同解决方案——由优步提供;


https://eng.uber.com/coordconv?spm=a2c4e.11153940.blogcont683655.58.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


RNN


No. 40


Google Duplex:用于通过电话完成真实世界任务的AI系统——由Yaniv Leviathan提供;


https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html?spm=a2c4e.11153940.blogcont683655.59.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 41


世界模型:代理人可以在自己的梦中学习吗?——由maru提供;



https://worldmodels.github.io/?spm=a2c4e.11153940.blogcont683655.60.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


强化学习


No. 42


经验教训再现深度强化学习论文——由Matthew Rahtz提供;



http://amid.fish/reproducing-deep-rl?spm=a2c4e.11153940.blogcont683655.61.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 43


具有强化学习的灵巧操作:高效、通用和低成本——由Henry Zhu等人提供;


https://bair.berkeley.edu/blog/2018/08/31/dexterous-manip?spm=a2c4e.11153940.blogcont683655.62.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 44


深度强化学习不起作用——由Sorta Insightful
提供;



https://www.alexirpan.com/2018/02/14/rl-hard.html?spm=a2c4e.11153940.blogcont683655.63.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


TensorFlow


No. 45


TensorFlow中的三元组损失和在线挖掘——由Olivier Moindrot提供;


https://omoindrot.github.io/triplet-loss?spm=a2c4e.11153940.blogcont683655.64.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 46


Tensorflow:令人困惑的部件(1)——由Jacob Buckman提供;


http://jacobbuckman.com/post/tensorflow-the-confusing-parts-1?spm=a2c4e.11153940.blogcont683655.65.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 47


Tensorflow-Project-Template:TensorFlow项目模板架构的最佳实践(Github上已有2579颗星)——由Mahmoud Gemy提供;


https://github.com/Mrgemy95/Tensorflow-Project-Template?spm=a2c4e.11153940.blogcont683655.66.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 48


使用TensorFlow.js在浏览器中进行实时人体姿态估计——由TensorFlow提供;



https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5?spm=a2c4e.11153940.blogcont683655.67.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


指南


No. 49


机器学习规则:| ML通用指南|谷歌开发者——由Martin Zinkevich提供;



https://developers.google.com/machine-learning/guides/rules-of-ml?spm=a2c4e.11153940.blogcont683655.68.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


No. 50


基于模型的机器学习——由John Winn和Christopher M. Bishop提供

http://mbmlbook.com/toc.html?spm=a2c4e.11153940.blogcont683655.69.1e195250rLB3BI&utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


以上就是2018年度top50机器学习教程。如果你有更好的文章,请留言。


作者信息


Mybridge,专业文章排名
本文由阿里云云栖社区组织翻译。
文章原标题《Learn Machine Learning from Top 50 Articles for the Past Year (v.2019)》,译者:海棠,审校:Uncle_LLD。



end

阿里云宣布进入 Serverless 容器时代,推出弹性容器实例服务 ECI

阿里巴巴达摩院发布2019十大科技趋势:语音AI在特定领域通过图灵测试

阿里研究员谷朴:API 设计最佳实践的思考

阿里巴巴AI夺肝结节诊断两项世界冠军,至今无人超越

更多精彩

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存