什么是相对论丨曹则贤
The following article is from 返朴 Author 曹则贤
关注风云之声
提升思维层次
导读
如果你在物理学里看到了革命,那是因为你知道的少!
2020年对整个世界来说是一个极为艰难的年头。万幸的是,我们的国家依然欣欣向荣,我们还能在一片祥和的气氛中迎接新年的到来。这一份不幸中的万幸,除了因为我们有坚强的领导和伟大而又自律的人民,还因为我们的社会崇尚科学、热爱科学、相信科学,并且以极大的热情拥抱科技的进步。
人类经历了三次工业革命,每一次工业革命都是因为物理学的革命性进展并带来物理学的革命性进展。中国错过了三次工业革命,但今天的中国已经初步完成了工业化,并且率先呼应工业4.0时代的到来。今天的中国,为世界提供大量的产品,也开始为世界提供新的技术。2020年,北斗系统全面建成并为全球免费提供导航服务;奋斗者号潜水器在马里亚纳海沟坐底,下潜深度为10909米;嫦娥五号月壤采样顺利返回,这些都是让我们无比自豪的技术进步。但是,中华民族是一个勤劳勇敢的民族,她也一直是一个智慧的民族。中国不仅要为世界提供产品和技术,她也要有能力为技术提供科学、为科学提供思想、为思想提供善于创造的头脑。
我们有受教育的权利,我们还有受最深刻教育的愿望,有掌握最高深知识的愿望。作为物理学的高峰,其中有两个是值得我们特别关注的,那就是被称为近代物理两大支柱的量子力学和相对论。今天,就让我们一起以轻松、愉快的心情领略相对论的厚重与美。
相对论三个字似乎人人知道。提起相对论,人们会想起光速不变,孪生子佯谬,“回到未来”之类的电影,还有“一切都是相对论的”哲学梦呓。1923年, 21岁的英国青年狄拉克就对这种浅薄的哲学梦呓不屑一顾。电气工程系毕业的狄拉克开始自学和研究相对论,当然是和量子力学一锅烩的,到了1928年即构造了相对论量子力学方程,
相对论是个什么样的学问呢?大致说来,相对论是关于时空的原理性理论,相对性原理(principle of relativity)是物理理论必须满足的要求(postulate)。相对论的发展是一个长达300余年的思想过程,在爱因斯坦1915年底奠立广义相对论的那一刻达到了顶峰。相对论是纯粹理性思维的胜利,是物理现实的内在和谐与数学表达的形式美学之间完美的相互激励。物理规律的变换不换性是相对论的核心思想。沿着朴素相对论、伽利略相对论经由狭义相对论抵达广义相对论,这一条绵密的思想河流上有最激动人心的关于物理学创造的历史画卷。
关于时空的相对论是物理学的fundamental theory. 物理学的主角就是时间-空间-物质,物质的存在引出空间的概念,(空间位置的)变化引出了时间的概念。时间和空间是靠光(速) 联系的。物质有电荷这个标签,它导致了电磁学和电-动力学;物质有质量这个标签,它导致了引力(gravity,重)问题。如何理解空间-时间-物质,是真正的物理学一定会关注的基本物理问题,我们也就能够理解,为什么那些大物理学家都会有这方面的专著展现他们的思考。比如,Hermann Weyl 有Raum-Zeit-Materie (空间-时间-物质),Erwin Schrödinger有 Space-time structure (时空结构), 而Roger Penrose有 Spinors and Space-time (旋量与时空)。有人说旋量不好理解,嗯,认真学会一元二次方程就好理解了。
论及时空,首先请记住物理学第零定律:世界是三维的;时间在向前飞逝。一般的R3空间加上R1时间,写成 (x, y, z; t) 的形式,后来到了狭义相对论,R3,1 时空 (spacetime) 写成了 (x, y, z; ct) 的形式, 这里 c 是作为时空连接的常数出现的。当然,如果讲究一点,应该写成 (x, y, z; ict) 的形式,这样的量,数学上称为双四元数 (biquaternion)。时空作为几何概念,我们要关注它的一些特征, 比如 度规 (metric),亲邻关系 (affinity) ,单位,零点,等等。有了一些基础的代数 (比如Lie algebra, Clifford Algebra) 和几何知识 (比如affine geometry, differential geometry, complex geometry),就能更多地理解相对论的表示与思想。
现在我们开始。本次讲座会论及朴素相对论 (Primitive relativity),伽利略相对论 (Galilean relativity),狭义相对论 (Special relativity, 也称 restricted relativity),非常狭义相对论 (Very special relativity),广义相对论 (General relativity, 也称 generalized relativity),整体相对论 (Total relativity),最后谈谈爱因斯坦其人其事以及其他参与发展相对论的人们。
先谈谈朴素相对论。生活在地球上,我们都熟悉月亮东升的景象 (月亮出来喽喂),但是在那么长的时光里,没人设想地球从天边升起的景象。如今人类能够进入太空,来到了月亮旁边,还真看到了这一出景象 (地球出来喽喂)。你看,养成换个观点 (point of view) 看世界的习惯,那可不容易。我们自然会想,景象变了,规律不会变吧?你的观点谅不至于影响世界运行的规律!关于这一点,我估计我们大家都服气。
可以想象猜透了行星轨道奥秘的开普勒有多么兴奋。在其全集第18卷有这么一大段,读来很提气,英文译本照录如下:“It is not eighteen months since I first caught a glimpse of the light, three months since the dawn, very few days since the unveiled Sun, most admirable to gaze upon, burst upon me. Nothing can restraint me; I shall indulge in my sacred fury; I shall triumph over mankind (我胜过你们人类) by the honest confession that I have stolen the golden vases of the Egyptians to build up a tabernacle for me God far from the confines of the Egypt. If you forgive me, I rejoice; if you are angry, I can bear it; the die is cast, the book is written, to be read either now or by posterity, I care not which; it may well wait a century for a reader, as God himself has waited six thousand years for someone to behold his work.”
最能表现开普勒之欣喜和傲娇的是这句I shall triumph over mankind by the honest confession… (我若坦诚….那我胜过你们人类)!嗯,胜过你们人类,这比高考弄个省状元大气多了。
朴素相对论指的是世界的运动规律关于时空平移是不变的 (仿射几何),不,是关于时空参照点的选择是不变的。假设关于世界的规律是这样的,f(r, t; λ)=0 , 则 f(r+r0, t+t0; λ)=0 也必然成立。
可以检查一下我们的物理定律,看看是否满足朴素相对论的要求。比如,电子气体系的哈密顿量,
r→r'=r+r0t→t'=t+t0 这样的时空平移对称性,确实被“无去来处”这样的古老智慧所言中。可由此去解读陶渊明的《桃花源记》:“太守即遣人随其往,寻向所志,遂迷,不复得路。” 要是标记都具有平移对称性,那是没什么用的,不迷才怪。
You will discover not the least change in all the effects named, nor could you tell from any of them whether the ship was moving or standing still (你不会发现有任何异样,你也弄不清船是停是动)。” 同样的说法,也出现在东汉时《尚书纬·考灵曜》中:“地恒动不止而人不知,譬如人在大舟中,闭牖而坐,舟行而不觉也。” 这些反映的是伽利略相对论的内容,当然伽利略相对论的这个概念是到1909年才有的。
伽利略相对论是说,假设关于世界的规律是这样的,g(x, t; λ)=0, 则 g(x+v0t, t; λ)=0 也必然成立。x'=x+v0t, t'=t 对称性反映在“动静等观”这样的古老智慧中。
看看牛顿第二定律,
考察牛顿万有引力,
那关于经典电磁学呢?伽利略相对论对应的速度变换是 v→v+v0,而带电荷的粒子,在电磁场下受力是洛伦兹力,则运动方程为
至此我们关于时空变换有了一些初步的感觉了。现在我们需要准备一些数学知识了。从前,三维空间和一维时间的变换是这样的,x'=Rx+v0t+x0,t+t0,共有三维空间的3个平移分量,3个平动造成的位移,加上描述转动的R矩阵有3个自由度,外加时间平移,这是一个3+3+3=1=10 个自由参数的变换问题。如果把时间和空间放到一起,变换为
提到变换,我们追求变换后不变的那些内容。这是个有趣的物理哲学,研究变化,追求的却是不变性。一方面是变量,变化,变换 ;另一侧是不变性、等价性、对称性。记住这些概念,这是物理的内涵所在。
相应的数学语言,就是群论 (théorie de groupe)。相对论的理论是用时空对称群描述的,群元素逆的存在保证了相对性。2020年11月,当我意识到这一点的时候,我给自己多买了一个馒头。
关于变换不变性,焗两个栗子吧。比如,柏拉图多面体,可看作是由球形液滴一路变形过来的,变化了,即被变换了,但是有一个东西不变,就是 V-E+F=2 总成立,其中V是顶点数,E是边数,F是面数,你们自己数一数。这个公式就是欧拉定理。又,x2+y2=1是平面内的单位圆,作变换,
再焗一个栗子吧,重要的。经典力学里有哈密顿方程,
日常生活中变换不变性的一个活生生的例子就是婚礼誓词。不管是什么语言、什么朝代的婚礼誓词,大意都是天可以变、地可以变、我可以变,但你得对我好这一条不许变。多复习几遍婚礼誓词,你就能 get 到相对论的核心思想了。
狭义相对论的故事开始于麦克斯韦方程组,
你再好好看这个电磁波方程。它有个速度,可以由参数 ε0 和 μ0 算出来,速度和已知的光速差不多,电磁波好象跟光是一回事儿啊。好吧,光 (受电路打出的火花启发才这么想的?) 就是电磁波。还有,那光的速度是算出来的,好象没有参照物呃。个人认为,这才是光速的致命特征!
一点感慨。电磁波方程的推导,是严谨的推导;而电磁波的演示,是坦诚的验证,不是心里有鬼才去画鬼。从前的物理学家,竟然是诚实的。
有了电磁波方程
让球波 (spherical wave) 还是球波的变换,Larmor, Heaviside, Lorentz 都研究过相关内容,后来庞加莱于1905年指出这个变换必须构成群,并且把它命名为洛伦兹变换。洛伦兹变换其实比较好推导。1. 要求是线性变换
相互运动的钟表之间怎么校准呢?爱因斯坦,这位瑞士联邦专利局三等技术专家,瞄准的是这个问题。关键词,相互运动的钟表怎么校准!
记运动参照系中静止点的坐标 (ξ,η,ζ) ,在静参照系表述的坐标对应(x-vt,y,z),与是时间无关。那么,时间τ是 (x-vt, y, z;t) 什么函数呢?设起始时两参照系原点重合,考察动参照框架内,从原点于τ0发出一光信号在τ1到达另一动参照系里的静止点 (对应x’=x-vt),于τ2时刻回到初始点。这就是在静参照系中看(表示)动坐标系中的时间校准过程。在运动体系的校准判据为 ½(τ0+τ2)=τ1,此即
更神奇的是,运动钟表的校准问题才是此刻相对论的核心,这是爱因斯坦1905年文章的关键,但在诸多的相对论教科书、介绍文献中从未强调这个。可能是我读书太少,没遇到过,哪位朋友手里有论述这一段对狭义相对论和爱因斯坦地位的意义的 (含爱因斯坦校准过程的方程) ,请告诉我。 光是得到洛伦兹变换还不算建立相对论了。爱因斯坦用相对论原理是能做物理的。比如,任何运动光源发出的光到达观察者的速度都是常数c,由此考察原子向相反方向发出两个同样光子的过程。比较原子与你相对静止和相对运动两种情形,自然这过程都遵循能量守恒和动量守恒,方程相减可得
在理论物理中我们可以随手写下c=1, ħ=1。至于为什么c=1?Yuri Manin 对这个问题的回答是:因为它就等于1!不明白的读者朋友们,请耐心多读一些经典力学、电动力学、相对论、量子力学、量子电动力学、量子场论、规范场论的书,慢慢地就能理解曼宁的这句话了。 狭义相对论对我们的生活有深刻的影响。首先,同时性的概念被抛弃,授时成为必要并且科学地实现了。光速是时空的连接,是约定的常(整)数,c=299729458 m/s;所以测距经公式 Δl=cΔt 转换为对时间的测量,所以雷达、导航卫星中最核心的部件是高精度时钟!E= c2m 启发了核能的应用。
狭义相对论来自麦克斯韦方程组。麦克斯韦方程组的群是15-参数的 SU(2, 4)群,狭义相对论的时空变换
来自麦克斯韦方程组的洛伦兹变换不适用于牛顿引力方程
看看关于匀速圆周运动的描述,加速度为
爱因斯坦从1907年忙到1912年,尝试了多种推广相对论的方案,进展不顺。到了1912年,算是明白了引力↔加速度↔曲率↔弯曲时空的关系。关于弯曲时空,我们要做的是针对一般的 gμν ,如何描述相应时空的曲率,建立起引力质量体如何产生引力的方程。对非惯性参考框架要求物理定律不变,其实就是要求二阶微分方程形式的物理定律对含二阶微分项的变换的某种不变性,即微分同胚协变性。这注定了理论的非线性本质。这个不变性的要求以及要构造的引力论本质上是几何的理论,决定了张量 (Tensor) 语言是合适的表达工具。 有这样的用于建立弯曲时空中引力理论的数学吗?爱因斯坦的同学Marcel Grossmann在翻了一晚上图书馆后告诉他,有!这个理论是高斯、黎曼开启的,称为黎曼几何,如今的黎曼几何大家有一个是意大利人Levi- Civita, 此人有一本书 absolute differential calculus. 你看看absolute这个词,那就是相对论的特质!Marcel Grossmann介绍爱因斯坦和Levi- Civita认识,Levi- Civita以极大的热情、以通讯的方式、用德文和法文教爱因斯坦这门学问—绝对微分,如今称为张量分析。Levi- Civita教爱因斯坦的严重后果是他自己教成了相对论专家,他的书新版后面两章就是关于相对论的。他1917年发展出的平行移动的概念,是广义相对论、微分几何、规范场论的重要基础。学者啊,你要舍得教别人!
此刻回顾一下希尔伯特的那句话:“物理,对物理学家来说,太难了!”你得多自信才会觉得人家希尔伯特恶毒。 就数学而言,爱因斯坦的理论有两个先驱值得一提。克里福德 (William Kindon Clifford,1845-1879) 曾云:引力引起空间弯曲, 物质可能只是弯曲空间上的涟漪。“ 这一句后来被一些碰广义相对论瓷的人给用烂了。克利福德辞世后的第11天,爱因斯坦诞生。 另一个人是黎曼,他1854年的“作为几何基础的几个假设” 一文后来发展成了黎曼几何。黎曼是电动力学的缔造者之一。 有了引力方程 Rμν-½Rgμν+Λgμν=-8πGTμν,加上测地线方程
1883年马赫指出:“牛顿的水桶实验告诉我们,水相对于桶壁的转动不会产生可观的向心力,但是相对于地球或者远处其它星体的转动产生了那样的向心力。毕竟,我们不知道如果桶足够厚实、质量足够大时的结果会怎样” (大意)。马赫的这句话是极具洞察力和先见之明的。
转动相对性的问题让人们深入思考参照框架的问题。我们有什么理由认为这两个相互作为参照的流体会有不同的行为呢?爱因斯坦的回答是,原因必然在这个体系之外 (Die Ursache muß also außerhalb dieses Systems liegen),这两个物体的力学行为完全由远处的质量分布所决定。
这个问题, 诺奖得主Wilczek曾以“total relativity”为题加以论述。
有一种说法,预言引力红移和光线弯曲,以及解释水星近日点进动,是广义相对论正确的三大证据。其实猜测引力红移和光线弯曲在给出场方程之前,只有计算水星近日点进动才是在给出场方程之后。关于引力场中光线弯曲的说法,愚以为是不正确的。光线从不弯曲,光走的路径才是物理的直线!就 说时空弯曲了好了!
狭义相对论创立于 1905-1907,广义相对论创立于1915-1916,是天才的头脑风暴产出。数学和物理兼备的头脑,才得做出物理来。在这幅著名的量子力学创造者的照片里 (这样理解似乎不对!) 有一些也是相对论的创造者,包括爱因斯坦、普朗克、泡利、狄拉克等。 二维复矩阵的希尔伯特空间有 4个独立变量,需要4个基,
1917年,爱因斯坦闲来无事,在辐射~物质相互作用平衡的基础上重新得到普朗克分布,其中重要的时提出了受激辐射的概念。受激辐射概念导致了激光的出现。1924年,爱因斯坦发展玻色的黑体辐射公式推导,进而有了玻色-爱因斯坦统计和玻色-爱因斯坦凝聚。 杨振宁先生曾评价到: Einstein was very independent and extremely stubborn (爱因斯坦时一个特立独行的思想者:无畏,独立,富有创造性并且执着) 。要我说啊,唯有如此,他才能给出一个overall的框架,因为一个人在战斗,他必须对问题有整体的把握, 那才是一个自洽的理论能够产生的前提!这让我想起了关于Oppenheimer的一句话“He knew that each one must know the whole thing if he was to be creative.” 回顾相对论的发展,可知科学革命的说法有多么荒唐!马赫说,如果你在物理学里看到了革命,那是因为你知道的少!
革命不是一件容易的事情,尤其是在科学思想领域。哥白尼的日心说看似是对地心说的革命,可是哥白尼的日心说中行星运动的参考点还是地球。毕竟,关于行星的观测数据是从地球上获得的。这体现了思维的惯性。 广义相对论是爱因斯坦一个人的创造,但他生活的环境为他提供了所需的哲学、数学和技术进步。哲学方面有康德,莱布尼兹,马赫……数学方面有:高斯,黎曼,希尔伯特,诺德,格拉斯曼……我的观点是:物理学是一条思想的河流! 我甚至想,相对论是德式严谨 (Kepler, Gauss, Riemann, Mach Einstein, Minkowski) 与意式浪漫 (Galileo, de Pretto, Ricci, Levi-Civita) 的完美结合?
总结一下吧。相对论由如下内容构成,包括:
朴素相对论 (应用~1602;命名2018,曹则贤)
伽利略相对论(阐述~1632;命名1909)
狭义相对论(创立~1905;命名1916)
广义相对论(创立~1915;命名1916)
Very Special Relativity(命名2006, Cohn/Glashow)
Total Relativity(命名2004,Wilczek)
其内容可总结如下
• 相对性原理 (principle of relativity) 是对物理理论的形式要求 (postulate) ;此外,其表述不依赖于坐标 (coordinate-free);• 相对论的精髓是对时空 (space-time) 的洛伦兹变换 (洛伦兹群/庞加莱群);• 光是时空的连接。光速没有参照框架。我们不理解光;• 广义相对论是引力理论。加速度同曲率相联系,微分和联络有关。要学点微分几何;• (狭义)相对论量子力学、量子场论,(广义) 相对论下的规范场论,才见学问;
• 具有四百余年历史的相对论如今该是受教育者的知识标配。
至此我和大家大概浏览了一下相对论的内容。然而,道可道,非常道,靠听这样的讲座是不能够学会相对论的。对一门学问最好的纪念, 是学会它从而能从内心深处准确地欣赏它、赞美它。若是能够进而掌握它并为之赋予新的内容,那就……不说啦。欲知相对论,请自己去读爱因斯坦 et al. 选好的文献,文献的层次决定你知识的层次。尊重你自己!
我推荐如下文献作为学习相对论的参考书,并附理由。Einstein 的论文+The meaning of Relativity,本尊叙述;Max Born的Einstein’s Relativity,大神级老友的评论;Hermann Weyl的 Raum-Zeit-Materie ,这是大神的经典,指向规范场论;Dirac的General theory of Relativity,69页,简练,但全是精髓;Weinberg的 Gravitation and Cosmology, 诺奖得主、宇宙学大拿不是虚的;Wald 的General Relativity, 特别切题的封面,绿苹果上面是一张铺着白桌布的桌子,这是懂引力和微分几何人设计的;
Carroll的Spacetime and Geometry, 挺有名的教科书,内容比较靠近数学,还行;
最后,是曹则贤的《相对论~少年版》,274页,内容非常全面,可作为入门的参考书。这是学相对论文献的下限,再低就不成样子了。
预备知识:经典力学,光学,电动力学,线性代数,群论,不变量理论,微分几何……这些多少你都学一点。到学不懂处,你要经常回过头来再学。
扩展阅读:
幸亏我们是生活在三维空间中:空间维度、数学与物理现实的巧合 | 曹则贤妖精在吃唐僧肉问题上的古怪行为之物理学诠释 | 曹则贤
科学家,到底应该是什么样的人?| 曹则贤
装物理学家很欢乐很沉重 | 曹则贤
背景简介:本文作者曹则贤,现为中国科学院物理研究所研究员,著有《物理学咬文嚼字》 (四卷),《至美无相》,Thin Film Growth,《一念非凡》, 《惊艳一击》,《量子力学-少年版》,《相对论-少年版》,《云端脚下》等。文章2020年12月31日发表于微信公众号 返朴 (曹则贤2021跨年科学演讲:什么是相对论丨贤说八道),风云之声获授权转载。
责任编辑:祝阳