查看原文
其他

这是一篇非常不错的介绍U-boot工作机制的好文

嵌入式ARM 嵌入式ARM 2021-01-31

这是一篇网络整理的资料,学习u-boot,最好还是买块开发板,以便于实验。 开发板不用买高档的,买个基本的arm9的就行了。因为我们是学习嵌入式系统原理,有个基本的arm9 CPU就足够了。当然,如果是做产品,那还是需要根据产品本身的需求来做选型的。有了开发板,就可以修改、编译、烧写u-boot、内核、根文件系统了。有了开发板,就可以理解从CPU一通电开始,到Linux跑起来,到最后应用跑起来,在这整个过程中,机器里所发生的一切事情了。

 

下面开始,U-Boot启动内核的过程可以分为两个阶段,两个阶段的功能如下:

 

(1)第一阶段的功能

  • 硬件设备初始化

  • 加载U-Boot第二阶段代码到RAM空间

  • 设置好栈

  • 跳转到第二阶段代码入口


(2)第二阶段的功能

  • 初始化本阶段使用的硬件设备

  • 检测系统内存映射

  • 将内核从Flash读取到RAM中

  • 为内核设置启动参数

  • 调用内核


1.1.1 U-Boot启动第一阶段代码分析


第一阶段对应的文件是cpu/arm920t/start.S和board/samsung/mini2440/lowlevel_init.S。


U-Boot启动第一阶段流程如下:

 

图 2.1 U-Boot启动第一阶段流程


根据cpu/arm920t/u-boot.lds中指定的连接方式:

ENTRY(_start)

SECTIONS

{

. = 0x00000000;

. = ALIGN(4);

.text :

{

cpu/arm920t/start.o (.text)

board/samsung/mini2440/lowlevel_init.o (.text)

board/samsung/mini2440/nand_read.o (.text)

*(.text)

}

… …

}


第一个链接的是cpu/arm920t/start.o,因此u-boot.bin的入口代码在cpu/arm920t/start.o中,其源代码在cpu/arm920t/start.S中。下面我们来分析cpu/arm920t/start.S的执行。


1. 硬件设备初始化


(1)设置异常向量

cpu/arm920t/start.S开头有如下的代码:

.globl _start

_start: b start_code /* 复位 */

ldr pc, _undefined_instruction /* 未定义指令向量 */

ldr pc, _software_interrupt /* 软件中断向量 */

ldr pc, _prefetch_abort /* 预取指令异常向量 */

ldr pc, _data_abort /* 数据操作异常向量 */

ldr pc, _not_used /* 未使用 */

ldr pc, _irq /* irq中断向量 */

ldr pc, _fiq /* fiq中断向量 */

/* 中断向量表入口地址 */

_undefined_instruction: .word undefined_instruction

_software_interrupt: .word software_interrupt

_prefetch_abort: .word prefetch_abort

_data_abort: .word data_abort

_not_used: .word not_used

_irq: .word irq

_fiq: .word fiq

.balignl 16,0xdeadbeef


以上代码设置了ARM异常向量表,各个异常向量介绍如下:


表 2.1 ARM异常向量表   


在cpu/arm920t/start.S中还有这些异常对应的异常处理程序。当一个异常产生时,CPU根据异常号在异常向量表中找到对应的异常向量,然后执行异常向量处的跳转指令,CPU就跳转到对应的异常处理程序执行。


其中复位异常向量的指令“b start_code”决定了U-Boot启动后将自动跳转到标号“start_code”处执行。


(2)CPU进入SVC模式

start_code:

/*

* set the cpu to SVC32 mode

*/

mrs r0, cpsr

bic r0, r0, #0x1f /*工作模式位清零 */

orr r0, r0, #0xd3 /*工作模式位设置为“10011”(管理模式),并将中断禁止位和快中断禁止位置1 */

msr cpsr, r0


以上代码将CPU的工作模式位设置为管理模式,并将中断禁止位和快中断禁止位置一,从而屏蔽了IRQ和FIQ中断。


(3)设置控制寄存器地址

# if defined(CONFIG_S3C2400)

# define pWTCON 0x15300000

# define INTMSK 0x14400008

# define CLKDIVN 0x14800014

#else /* s3c2410与s3c2440下面4个寄存器地址相同 */

# define pWTCON 0x53000000 /* WATCHDOG控制寄存器地址 */

# define INTMSK 0x4A000008 /* INTMSK寄存器地址 */

# define INTSUBMSK 0x4A00001C /* INTSUBMSK寄存器地址 */

# define CLKDIVN 0x4C000014 /* CLKDIVN寄存器地址 */

# endif

对与s3c2440开发板,以上代码完成了WATCHDOG,INTMSK,INTSUBMSK,CLKDIVN四个寄存器的地址的设置。各个寄存器地址参见参考文献[4] 。


(4)关闭看门狗

ldr r0, =pWTCON

mov r1, #0x0

str r1, [r0] /* 看门狗控制器的最低位为0时,看门狗不输出复位信号 */

以上代码向看门狗控制寄存器写入0,关闭看门狗。否则在U-Boot启动过程中,CPU将不断重启。


(5)屏蔽中断

/*

* mask all IRQs by setting all bits in the INTMR - default

*/

mov r1, #0xffffffff /* 某位被置1则对应的中断被屏蔽 */

ldr r0, =INTMSK

str r1, [r0]

INTMSK是主中断屏蔽寄存器,每一位对应SRCPND(中断源引脚寄存器)中的一位,表明SRCPND相应位代表的中断请求是否被CPU所处理。


根据参考文献4,INTMSK寄存器是一个32位的寄存器,每位对应一个中断,向其中写入0xffffffff就将INTMSK寄存器全部位置一,从而屏蔽对应的中断。

# if defined(CONFIG_S3C2440)

ldr r1, =0x7fff

ldr r0, =INTSUBMSK

str r1, [r0]

# endif


INTSUBMSK每一位对应SUBSRCPND中的一位,表明SUBSRCPND相应位代表的中断请求是否被CPU所处理。


根据参考文献4,INTSUBMSK寄存器是一个32位的寄存器,但是只使用了低15位。向其中写入0x7fff就是将INTSUBMSK寄存器全部有效位(低15位)置一,从而屏蔽对应的中断。


(6)设置MPLLCON,UPLLCON, CLKDIVN

# if defined(CONFIG_S3C2440)

#define MPLLCON 0x4C000004

#define UPLLCON 0x4C000008

ldr r0, =CLKDIVN

mov r1, #5

str r1, [r0]

ldr r0, =MPLLCON

ldr r1, =0x7F021

str r1, [r0]

ldr r0, =UPLLCON

ldr r1, =0x38022

str r1, [r0]

# else

/* FCLK:HCLK:PCLK = 1:2:4 */

/* default FCLK is 120 MHz ! */

ldr r0, =CLKDIVN

mov r1, #3

str r1, [r0]

#endif

CPU上电几毫秒后,晶振输出稳定,FCLK=Fin(晶振频率),CPU开始执行指令。但实际上,FCLK可以高于Fin,为了提高系统时钟,需要用软件来启用PLL。这就需要设置CLKDIVN,MPLLCON,UPLLCON这3个寄存器。


CLKDIVN寄存器用于设置FCLK,HCLK,PCLK三者间的比例,可以根据表2.2来设置。


表 2.2 S3C2440 的CLKDIVN寄存器格式


设置CLKDIVN为5,就将HDIVN设置为二进制的10,由于CAMDIVN[9]没有被改变过,取默认值0,因此HCLK = FCLK/4。PDIVN被设置为1,因此PCLK= HCLK/2。因此分频比FCLK:HCLK:PCLK = 1:4:8 。


MPLLCON寄存器用于设置FCLK与Fin的倍数。MPLLCON的位[19:12]称为MDIV,位[9:4]称为PDIV,位[1:0]称为SDIV。


对于S3C2440,FCLK与Fin的关系如下面公式:

MPLL(FCLK) = (2×m×Fin)/(p×)


其中: m=MDIC+8,p=PDIV+2,s=SDIV


MPLLCON与UPLLCON的值可以根据参考文献4中“PLL VALUE SELECTION TABLE”设置。该表部分摘录如下:


表 2.3 推荐PLL值   


当mini2440系统主频设置为405MHZ,USB时钟频率设置为48MHZ时,系统可以稳定运行,因此设置MPLLCON与UPLLCON为:

MPLLCON=(0x7f<<12) | (0x02<<4) | (0x01) = 0x7f021

UPLLCON=(0x38<<12) | (0x02<<4) | (0x02) = 0x38022


(7)关闭MMU,cache

接着往下看:

#ifndef CONFIG_SKIP_LOWLEVEL_INIT

bl cpu_init_crit

#endif

cpu_init_crit这段代码在U-Boot正常启动时才需要执行,若将U-Boot从RAM中启动则应该注释掉这段代码。


下面分析一下cpu_init_crit到底做了什么:

320 #ifndef CONFIG_SKIP_LOWLEVEL_INIT

321 cpu_init_crit:

322 /*

323 * 使数据cache与指令cache无效 */

324 */

325 mov r0, #0

326 mcr p15, 0, r0, c7, c7, 0 /* 向c7写入0将使ICache与DCache无效*/

327 mcr p15, 0, r0, c8, c7, 0 /* 向c8写入0将使TLB失效 */

328

329 /*

330 * disable MMU stuff and caches

331 */

332 mrc p15, 0, r0, c1, c0, 0 /* 读出控制寄存器到r0中 */

333 bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS)

334 bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM)

335 orr r0, r0, #0x00000002 @ set bit 2 (A) Align

336 orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache

337 mcr p15, 0, r0, c1, c0, 0 /* 保存r0到控制寄存器 */

338

339 /*

340 * before relocating, we have to setup RAM timing

341 * because memory timing is board-dependend, you will

342 * find a lowlevel_init.S in your board directory.

343 */

344 mov ip, lr

345

346 bl lowlevel_init

347

348 mov lr, ip

349 mov pc, lr

350 #endif /* CONFIG_SKIP_LOWLEVEL_INIT */


代码中的c0,c1,c7,c8都是ARM920T的协处理器CP15的寄存器。其中c7是cache控制寄存器,c8是TLB控制寄存器。325~327行代码将0写入c7、c8,使Cache,TLB内容无效。


第332~337行代码关闭了MMU。这是通过修改CP15的c1寄存器来实现的,先看CP15的c1寄存器的格式(仅列出代码中用到的位):


表 2.3 CP15的c1寄存器格式(部分)


各个位的意义如下:

V : 表示异常向量表所在的位置,0:异常向量在0x00000000;1:异常向量在 0xFFFF0000

I : 0 :关闭ICaches;1 :开启ICaches

R、S : 用来与页表中的描述符一起确定内存的访问权限

B : 0 :CPU为小字节序;1 : CPU为大字节序

C : 0:关闭DCaches;1:开启DCaches

A : 0:数据访问时不进行地址对齐检查;1:数据访问时进行地址对齐检查

M : 0:关闭MMU;1:开启MMU


332~337行代码将c1的 M位置零,关闭了MMU。


(8)初始化RAM控制寄存器

其中的lowlevel_init就完成了内存初始化的工作,由于内存初始化是依赖于开发板的,因此lowlevel_init的代码一般放在board下面相应的目录中。对于mini2440,lowlevel_init在board/samsung/mini2440/lowlevel_init.S中定义如下:

45 #define BWSCON 0x48000000 /* 13个存储控制器的开始地址 */

… …

129 _TEXT_BASE:

130 .word TEXT_BASE

131

132 .globl lowlevel_init

133 lowlevel_init:

134 /* memory control configuration */

135 /* make r0 relative the current location so that it */

136 /* reads SMRDATA out of FLASH rather than memory ! */

137 ldr r0, =SMRDATA

138 ldr r1, _TEXT_BASE

139 sub r0, r0, r1 /* SMRDATA减 _TEXT_BASE就是13个寄存器的偏移地址 */

140 ldr r1, =BWSCON /* Bus Width Status Controller */

141 add r2, r0, #13*4

142 0:

143 ldr r3, [r0], #4 /*将13个寄存器的值逐一赋值给对应的寄存器*/

144 str r3, [r1], #4

145 cmp r2, r0

146 bne 0b

147

148 /* everything is fine now */

149 mov pc, lr

150

151 .ltorg

152 /* the literal pools origin */

153

154 SMRDATA: /* 下面是13个寄存器的值 */

155 .word … …

156 .word … …

… …

l

owlevel_init初始化了13个寄存器来实现RAM时钟的初始化。lowlevel_init函数对于U-Boot从NAND Flash或NOR Flash启动的情况都是有效的。


U-Boot.lds链接脚本有如下代码:

.text :

{

cpu/arm920t/start.o (.text)

board/samsung/mini2440/lowlevel_init.o (.text)

board/samsung/mini2440/nand_read.o (.text)

… …

}

board/samsung/mini2440/lowlevel_init.o将被链接到cpu/arm920t/start.o后面,因此board/samsung/mini2440/lowlevel_init.o也在U-Boot的前4KB的代码中。


U-Boot在NAND Flash启动时,lowlevel_init.o将自动被读取到CPU内部4KB的内部RAM中。因此第137~146行的代码将从CPU内部RAM中复制寄存器的值到相应的寄存器中。


对于U-Boot在NOR Flash启动的情况,由于U-Boot连接时确定的地址是U-Boot在内存中的地址,而此时U-Boot还在NOR Flash中,因此还需要在NOR Flash中读取数据到RAM中。


由于NOR Flash的开始地址是0,而U-Boot的加载到内存的起始地址是TEXT_BASE,SMRDATA标号在Flash的地址就是SMRDATA-TEXT_BASE。


综上所述,lowlevel_init的作用就是将SMRDATA开始的13个值复制给开始地址[BWSCON]的13个寄存器,从而完成了存储控制器的设置。


(9)复制U-Boot第二阶段代码到RAM

cpu/arm920t/start.S原来的代码是只支持从NOR Flash启动的,经过修改现在U-Boot在NOR Flash和NAND Flash上都能启动了,实现的思路是这样的:

bl bBootFrmNORFlash /* 判断U-Boot是在NAND Flash还是NOR Flash启动 */

cmp r0, #0 /* r0存放bBootFrmNORFlash函数返回值,若返回0表示NAND Flash启动,否则表示在NOR Flash启动 */

beq nand_boot /* 跳转到NAND Flash启动代码 */

/* NOR Flash启动的代码 */

b stack_setup /* 跳过NAND Flash启动的代码 */

nand_boot:

/* NAND Flash启动的代码 */

stack_setup:

/* 其他代码 */

其中bBootFrmNORFlash函数作用是判断U-Boot是在NAND Flash启动还是NOR Flash启动,若在NOR Flash启动则返回1,否则返回0。根据ATPCS规则,函数返回值会被存放在r0寄存器中,因此调用bBootFrmNORFlash函数后根据r0的值就可以判断U-Boot在NAND Flash启动还是NOR Flash启动。bBootFrmNORFlash函数在board/samsung/mini2440/nand_read.c中定义如下:

int bBootFrmNORFlash(void)

{

volatile unsigned int *pdw = (volatile unsigned int *)0;

unsigned int dwVal;

dwVal = *pdw; /* 先记录下原来的数据 */

*pdw = 0x12345678;

if (*pdw != 0x12345678) /* 写入失败,说明是在NOR Flash启动 */

{

return 1;

}

else /* 写入成功,说明是在NAND Flash启动 */

{

*pdw = dwVal; /* 恢复原来的数据 */

return 0;

}

}


无论是从NOR Flash还是从NAND Flash启动,地址0处为U-Boot的第一条指令“ b start_code”。

对于从NAND Flash启动的情况,其开始4KB的代码会被自动复制到CPU内部4K内存中,因此可以通过直接赋值的方法来修改。


对于从NOR Flash启动的情况,NOR Flash的开始地址即为0,必须通过一定的命令序列才能向NOR Flash中写数据,所以可以根据这点差别来分辨是从NAND Flash还是NOR Flash启动:向地址0写入一个数据,然后读出来,如果发现写入失败的就是NOR Flash,否则就是NAND Flash。


下面来分析NOR Flash启动部分代码:

208 adr r0, _start /* r0 <- current position of code */

209 ldr r1, _TEXT_BASE /* test if we run from flash or RAM */

/* 判断U-Boot是否是下载到RAM中运行,若是,则不用 再复制到RAM中了,这种情况通常在调试U-Boot时才发生 */


210 cmp r0, r1 /*_start等于_TEXT_BASE说明是下载到RAM中运行 */

211 beq stack_setup

212 /* 以下直到nand_boot标号前都是NOR Flash启动的代码 */

213 ldr r2, _armboot_start

214 ldr r3, _bss_start

215 sub r2, r3, r2 /* r2 <- size of armboot */

216 add r2, r0, r2 /* r2 <- source end address */

217 /* 搬运U-Boot自身到RAM中*/

218 copy_loop:

219 ldmia r0!, {r3-r10} /* 从地址为[r0]的NOR Flash中读入8个字的数据 */

220 stmia r1!, {r3-r10} /* 将r3至r10寄存器的数据复制给地址为[r1]的内存 */

221 cmp r0, r2 /* until source end addreee [r2] */

222 ble copy_loop

223 b stack_setup /* 跳过NAND Flash启动的代码 */


下面再来分析NAND Flash启动部分代码:


nand_boot:

mov r1, #NAND_CTL_BASE

ldr r2, =( (7<<12)|(7<<8)|(7<<4)|(0<<0) )

str r2, [r1, #oNFCONF] /* 设置NFCONF寄存器 */

/* 设置NFCONT,初始化ECC编/解码器,禁止NAND Flash片选 */

ldr r2, =( (1<<4)|(0<<1)|(1<<0) )

str r2, [r1, #oNFCONT]

ldr r2, =(0x6) /* 设置NFSTAT */

str r2, [r1, #oNFSTAT]

/* 复位命令,第一次使用NAND Flash前复位 */

mov r2, #0xff

strb r2, [r1, #oNFCMD]

mov r3, #0

/* 为调用C函数nand_read_ll准备堆栈 */

ldr sp, DW_STACK_START

mov fp, #0

/* 下面先设置r0至r2,然后调用nand_read_ll函数将U-Boot读入RAM */

ldr r0, =TEXT_BASE /* 目的地址:U-Boot在RAM的开始地址 */

mov r1, #0x0 /* 源地址:U-Boot在NAND Flash中的开始地址 */

mov r2, #0x30000 /* 复制的大小,必须比u-boot.bin文件大,并且必须是NAND Flash块大小的整数倍,这里设置为0x30000(192KB) */

bl nand_read_ll /* 跳转到nand_read_ll函数,开始复制U-Boot到RAM */

tst r0, #0x0 /* 检查返回值是否正确 */

beq stack_setup

bad_nand_read:

loop2: b loop2 //infinite loop

.align 2

DW_STACK_START: .word STACK_BASE+STACK_SIZE-4

其中NAND_CTL_BASE,oNFCONF等在include/configs/mini2440.h中定义如下:

#define NAND_CTL_BASE 0x4E000000 // NAND Flash控制寄存器基址

#define STACK_BASE 0x33F00000 //base address of stack

#define STACK_SIZE 0x8000 //size of stack

#define oNFCONF 0x00 /* NFCONF相对于NAND_CTL_BASE偏移地址 */

#define oNFCONT 0x04 /* NFCONT相对于NAND_CTL_BASE偏移地址*/

#define oNFADDR 0x0c /* NFADDR相对于NAND_CTL_BASE偏移地址*/

#define oNFDATA 0x10 /* NFDATA相对于NAND_CTL_BASE偏移地址*/

#define oNFCMD 0x08 /* NFCMD相对于NAND_CTL_BASE偏移地址*/

#define oNFSTAT 0x20 /* NFSTAT相对于NAND_CTL_BASE偏移地址*/

#define oNFECC 0x2c /* NFECC相对于NAND_CTL_BASE偏移地址*/


NAND Flash各个控制寄存器的设置在S3C2440的数据手册有详细说明,这里就不介绍了。


代码中nand_read_ll函数的作用是在NAND Flash中搬运U-Boot到RAM,该函数在board/samsung/mini2440/nand_read.c中定义。


NAND Flash根据page大小可分为2种: 512B/page和2048B/page的。这两种NAND Flash的读操作是不同的。因此就需要U-Boot识别到NAND Flash的类型,然后采用相应的读操作,也就是说nand_read_ll函数要能自动适应两种NAND Flash。


参考S3C2440的数据手册可以知道:根据NFCONF寄存器的Bit3(AdvFlash (Read only))和Bit2 (PageSize (Read only))可以判断NAND Flash的类型。Bit2、Bit3与NAND Flash的block类型的关系如下表所示:


表 2.4 NFCONF的Bit3、Bit2与NAND Flash的关系


由于的NAND Flash只有512B/page和2048 B/page这两种,因此根据NFCONF寄存器的Bit3即可区分这两种NAND Flash了。


完整代码见board/samsung/mini2440/nand_read.c中的nand_read_ll函数,这里给出伪代码:

int nand_read_ll(unsigned char *buf, unsigned long start_addr, int size)

{

//根据NFCONF寄存器的Bit3来区分2种NAND Flash

if( NFCONF & 0x8 ) /* Bit是1,表示是2KB/page的NAND Flash */

{

////////////////////////////////////

读取2K block 的NAND Flash

////////////////////////////////////

}

else /* Bit是0,表示是512B/page的NAND Flash */

{

/////////////////////////////////////

读取512B block 的NAND Flash

/////////////////////////////////////

}

return 0;

}


(10)设置堆栈

/* 设置堆栈 */

stack_setup:

ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */

sub r0, r0, #CONFIG_SYS_MALLOC_LEN /* malloc area */

sub r0, r0, #CONFIG_SYS_GBL_DATA_SIZE /* 跳过全局数据区 */

#ifdef CONFIG_USE_IRQ

sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)

#endif

sub sp, r0, #12 /* leave 3 words for abort-stack */


只要将sp指针指向一段没有被使用的内存就完成栈的设置了。根据上面的代码可以知道U-Boot内存使用情况了,如下图所示:

 

图2.2 U-Boot内存使用情况


(11)清除BSS段

clear_bss:

ldr r0, _bss_start /* BSS段开始地址,在u-boot.lds中指定*/

ldr r1, _bss_end /* BSS段结束地址,在u-boot.lds中指定*/

mov r2, #0x00000000

clbss_l:str r2, [r0] /* 将bss段清零*/

add r0, r0, #4

cmp r0, r1

ble clbss_l

初始值为0,无初始值的全局变量,静态变量将自动被放在BSS段。应该将这些变量的初始值赋为0,否则这些变量的初始值将是一个随机的值,若有些程序直接使用这些没有初始化的变量将引起未知的后果。


(12)跳转到第二阶段代码入口

ldr pc, _start_armboot

_start_armboot: .word start_armboot

跳转到第二阶段代码入口start_armboot处。


1.1.2 U-Boot启动第二阶段代码分析



start_armboot函数在lib_arm/board.c中定义,是U-Boot第二阶段代码的入口。U-Boot启动第二阶段流程如下:

 

图 2.3 U-Boot第二阶段执行流程


在分析start_armboot函数前先来看看一些重要的数据结构:


(1)gd_t结构体

U-Boot使用了一个结构体gd_t来存储全局数据区的数据,这个结构体在include/asm-arm/global_data.h中定义如下:

typedef struct global_data {

bd_t *bd;

unsigned long flags;

unsigned long baudrate;

unsigned long have_console; /* serial_init() was called */

unsigned long env_addr; /* Address of Environment struct */

unsigned long env_valid; /* Checksum of Environment valid? */

unsigned long fb_base; /* base address of frame buffer */

void **jt; /* jump table */

} gd_t;


U-Boot使用了一个存储在寄存器中的指针gd来记录全局数据区的地址:

#define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r8")

DECLARE_GLOBAL_DATA_PTR定义一个gd_t全局数据结构的指针,这个指针存放在指定的寄存器r8中。这个声明也避免编译器把r8分配给其它的变量。任何想要访问全局数据区的代码,只要代码开头加入“DECLARE_GLOBAL_DATA_PTR”一行代码,然后就可以使用gd指针来访问全局数据区了。


根据U-Boot内存使用图中可以计算gd的值:

gd = TEXT_BASE -CONFIG_SYS_MALLOC_LEN - sizeof(gd_t)


(2)bd_t结构体

bd_t在include/asm-arm.u/u-boot.h中定义如下:

typedef struct bd_info {

int bi_baudrate; /* 串口通讯波特率 */

unsigned long bi_ip_addr; /* IP 地址*/

struct environment_s *bi_env; /* 环境变量开始地址 */

ulong bi_arch_number; /* 开发板的机器码 */

ulong bi_boot_params; /* 内核参数的开始地址 */

struct /* RAM配置信息 */

{

ulong start;

ulong size;

}bi_dram[CONFIG_NR_DRAM_BANKS];

} bd_t;

U-Boot启动内核时要给内核传递参数,这时就要使用gd_t,bd_t结构体中的信息来设置标记列表。


(3)init_sequence数组

U-Boot使用一个数组init_sequence来存储对于大多数开发板都要执行的初始化函数的函数指针。init_sequence数组中有较多的编译选项,去掉编译选项后init_sequence数组如下所示:

t

ypedef int (init_fnc_t) (void);

init_fnc_t *init_sequence[] = {

board_init, /*开发板相关的配置--board/samsung/mini2440/mini2440.c */

timer_init, /* 时钟初始化-- cpu/arm920t/s3c24x0/timer.c */

env_init, /*初始化环境变量--common/env_flash.c 或common/env_nand.c*/

init_baudrate, /*初始化波特率-- lib_arm/board.c */

serial_init, /* 串口初始化-- drivers/serial/serial_s3c24x0.c */

console_init_f, /* 控制通讯台初始化阶段1-- common/console.c */

display_banner, /*打印U-Boot版本、编译的时间-- gedit lib_arm/board.c */

dram_init, /*配置可用的RAM-- board/samsung/mini2440/mini2440.c */

display_dram_config, /* 显示RAM大小-- lib_arm/board.c */

NULL,

};


其中的board_init函数在board/samsung/mini2440/mini2440.c中定义,该函数设置了MPLLCOM,UPLLCON,以及一些GPIO寄存器的值,还设置了U-Boot机器码和内核启动参数地址 :

/* MINI2440开发板的机器码 */

gd->bd->bi_arch_number = MACH_TYPE_MINI2440;

/* 内核启动参数地址 */

gd->bd->bi_boot_params = 0x30000100;

其中的dram_init函数在board/samsung/mini2440/mini2440.c中定义如下:

int dram_init (void)

{

/* 由于mini2440只有 */

gd->bd->bi_dram[0].start = PHYS_SDRAM_1;

gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;

return 0;

}

mini2440使用2片32MB的SDRAM组成了64MB的内存,接在存储控制器的BANK6,地址空间是0x30000000~0x34000000。


在include/configs/mini2440.h中PHYS_SDRAM_1和PHYS_SDRAM_1_SIZE 分别被定义为0x30000000和0x04000000(64M)。


分析完上述的数据结构,下面来分析start_armboot函数:

void start_armboot (void)

{

init_fnc_t **init_fnc_ptr;

char *s;

… …

/* 计算全局数据结构的地址gd */

gd = (gd_t*)(_armboot_start - CONFIG_SYS_MALLOC_LEN - sizeof(gd_t));

… …

memset ((void*)gd, 0, sizeof (gd_t));

gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));

memset (gd->bd, 0, sizeof (bd_t));

gd->flags |= GD_FLG_RELOC;

monitor_flash_len = _bss_start - _armboot_start;

/* 逐个调用init_sequence数组中的初始化函数 */

for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {

if ((*init_fnc_ptr)() != 0) {

hang ();

}

}

/* armboot_start 在cpu/arm920t/start.S 中被初始化为u-boot.lds连接脚本中的_start */

mem_malloc_init (_armboot_start - CONFIG_SYS_MALLOC_LEN,

CONFIG_SYS_MALLOC_LEN);

/* NOR Flash初始化 */

#ifndef CONFIG_SYS_NO_FLASH

/* configure available FLASH banks */

display_flash_config (flash_init ());

#endif /* CONFIG_SYS_NO_FLASH */

… …

/* NAND Flash 初始化*/

#if defined(CONFIG_CMD_NAND)

puts ("NAND: ");

nand_init(); /* go init the NAND */

#endif

… …

/*配置环境变量,重新定位 */

env_relocate ();

… …

/* 从环境变量中获取IP地址 */

gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");

stdio_init (); /* get the devices list going. */

jumptable_init ();

… …

console_init_r (); /* fully init console as a device */

… …

/* enable exceptions */

enable_interrupts ();

#ifdef CONFIG_USB_DEVICE

usb_init_slave();

#endif

/* Initialize from environment */

if ((s = getenv ("loadaddr")) != NULL) {

load_addr = simple_strtoul (s, NULL, 16);

}

#if defined(CONFIG_CMD_NET)

if ((s = getenv ("bootfile")) != NULL) {

copy_filename (BootFile, s, sizeof (BootFile));

}

#endif

… …

/* 网卡初始化 */

#if defined(CONFIG_CMD_NET)

#if defined(CONFIG_NET_MULTI)

puts ("Net: ");

#endif

eth_initialize(gd->bd);

… …

#endif

/* main_loop() can return to retry autoboot, if so just run it again. */

for (;;) {

main_loop ();

}

/* NOTREACHED - no way out of command loop except booting */

}


main_loop函数在common/main.c中定义。一般情况下,进入main_loop函数若干秒内没有


1.1.3 U-Boot启动Linux过程


U-Boot使用标记列表(tagged list)的方式向Linux传递参数。标记的数据结构式是tag,在U-Boot源代码目录include/asm-arm/setup.h中定义如下:

struct tag_header {

u32 size; /* 表示tag数据结构的联合u实质存放的数据的大小*/

u32 tag; /* 表示标记的类型 */

};

struct tag {

struct tag_header hdr;

union {

struct tag_core core;

struct tag_mem32 mem;

struct tag_videotext videotext;

struct tag_ramdisk ramdisk;

struct tag_initrd initrd;

struct tag_serialnr serialnr;

struct tag_revision revision;

struct tag_videolfb videolfb;

struct tag_cmdline cmdline;

/*

* Acorn specific

*/

struct tag_acorn acorn;

/*

* DC21285 specific

*/

struct tag_memclk memclk;

} u;

};

U-Boot使用命令bootm来启动已经加载到内存中的内核。而bootm命令实际上调用的是do_bootm函数。对于Linux内核,do_bootm函数会调用do_bootm_linux函数来设置标记列表和启动内核。do_bootm_linux函数在lib_arm/bootm.c 中定义如下:

59 int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images)

60 {

61 bd_t *bd = gd->bd;

62 char *s;

63 int machid = bd->bi_arch_number;

64 void (*theKernel)(int zero, int arch, uint params);

65

66 #ifdef CONFIG_CMDLINE_TAG

67 char *commandline = getenv ("bootargs"); /* U-Boot环境变量bootargs */

68 #endif

… …

73 theKernel = (void (*)(int, int, uint))images->ep; /* 获取内核入口地址 */

… …

86 #if defined (CONFIG_SETUP_MEMORY_TAGS) || \

87 defined (CONFIG_CMDLINE_TAG) || \

88 defined (CONFIG_INITRD_TAG) || \

89 defined (CONFIG_SERIAL_TAG) || \

90 defined (CONFIG_REVISION_TAG) || \

91 defined (CONFIG_LCD) || \

92 defined (CONFIG_VFD)

93 setup_start_tag (bd); /* 设置ATAG_CORE标志 */

… …

100 #ifdef CONFIG_SETUP_MEMORY_TAGS

101 setup_memory_tags (bd); /* 设置内存标记 */

102 #endif

103 #ifdef CONFIG_CMDLINE_TAG

104 setup_commandline_tag (bd, commandline); /* 设置命令行标记 */

105 #endif

… …

113 setup_end_tag (bd); /* 设置ATAG_NONE标志 */

114 #endif

115

116 /* we assume that the kernel is in place */

117 printf ("\nStarting kernel ...\n\n");

… …

126 cleanup_before_linux (); /* 启动内核前对CPU作最后的设置 */

127

128 theKernel (0, machid, bd->bi_boot_params); /* 调用内核 */

129 /* does not return */

130

131 return 1;

132 }


其中的setup_start_tag,setup_memory_tags,setup_end_tag函数在lib_arm/bootm.c中定义如下:


(1)setup_start_tag函数

static void setup_start_tag (bd_t *bd)

{

params = (struct tag *) bd->bi_boot_params; /* 内核的参数的开始地址 */

params->hdr.tag = ATAG_CORE;

params->hdr.size = tag_size (tag_core);

params->u.core.flags = 0;

params->u.core.pagesize = 0;

params->u.core.rootdev = 0;

params = tag_next (params);

}


标记列表必须以ATAG_CORE开始,setup_start_tag函数在内核的参数的开始地址设置了一个ATAG_CORE标记。


(2)setup_memory_tags函数

static void setup_memory_tags (bd_t *bd)

{

int i;

/*设置一个内存标记 */

for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {

params->hdr.tag = ATAG_MEM;

params->hdr.size = tag_size (tag_mem32);

params->u.mem.start = bd->bi_dram[i].start;

params->u.mem.size = bd->bi_dram[i].size;

params = tag_next (params);

}

}

setup_memory_tags函数设置了一个ATAG_MEM标记,该标记包含内存起始地址,内存大小这两个参数。


(3)setup_end_tag函数

static void setup_end_tag (bd_t *bd)

{

params->hdr.tag = ATAG_NONE;

params->hdr.size = 0;

}

标记列表必须以标记ATAG_NONE结束,setup_end_tag函数设置了一个ATAG_NONE标记,表示标记列表的结束。


U-Boot设置好标记列表后就要调用内核了。但调用内核前,CPU必须满足下面的条件:


(1) CPU寄存器的设置

Ø r0=0

Ø r1=机器码

Ø r2=内核参数标记列表在RAM中的起始地址


(2) CPU工作模式

Ø 禁止IRQ与FIQ中断

Ø CPU为SVC模式


(3) 使数据Cache与指令Cache失效

do_bootm_linux中调用的cleanup_before_linux函数完成了禁止中断和使Cache失效的功能。cleanup_before_linux函数在cpu/arm920t/cpu.中定义:

int cleanup_before_linux (void)

{

/*

* this function is called just before we call linux

* it prepares the processor for linux

*

* we turn off caches etc ...

*/

disable_interrupts (); /* 禁止FIQ/IRQ中断 */

/* turn off I/D-cache */

icache_disable(); /* 使指令Cache失效 */

dcache_disable(); /* 使数据Cache失效 */

/* flush I/D-cache */

cache_flush(); /* 刷新Cache */

return 0;

}


由于U-Boot启动以来就一直工作在SVC模式,因此CPU的工作模式就无需设置了。

do_bootm_linux中:

64 void (*theKernel)(int zero, int arch, uint params);

… …

73 theKernel = (void (*)(int, int, uint))images->ep;

… …

128 theKernel (0, machid, bd->bi_boot_params);


第73行代码将内核的入口地址“images->ep”强制类型转换为函数指针。根据ATPCS规则,函数的参数个数不超过4个时,使用r0~r3这4个寄存器来传递参数。因此第128行的函数调用则会将0放入r0,机器码machid放入r1,内核参数地址bd->bi_boot_params放入r2,从而完成了寄存器的设置,最后转到内核的入口地址。


到这里,U-Boot的工作就结束了,系统跳转到Linux内核代码执行。


1.1.4 U-Boot添加命令的方法及U-Boot命令执行过程

下面以添加menu命令(启动菜单)为例讲解U-Boot添加命令的方法。


(1) 建立common/cmd_menu.c

习惯上通用命令源代码放在common目录下,与开发板专有命令源代码则放在board/目录下,并且习惯以“cmd_<命令名>.c”为文件名。


(2) 定义“menu”命令

在cmd_menu.c中使用如下的代码定义“menu”命令:

_BOOT_CMD(

menu, 3, 0, do_menu,

"menu - display a menu, to select the items to do something\n",

" - display a menu, to select the items to do something"

);


其中U_BOOT_CMD命令格式如下:

U_BOOT_CMD(name,maxargs,rep,cmd,usage,help)


各个参数的意义如下:

name:命令名,非字符串,但在U_BOOT_CMD中用“#”符号转化为字符串

maxargs:命令的最大参数个数

rep:是否自动重复(按Enter键是否会重复执行)

cmd:该命令对应的响应函数

usage:简短的使用说明(字符串)

help:较详细的使用说明(字符串)


在内存中保存命令的help字段会占用一定的内存,通过配置U-Boot可以选择是否保存help字段。若在include/configs/mini2440.h中定义了CONFIG_SYS_LONGHELP宏,则在U-Boot中使用help命令查看某个命令的帮助信息时将显示usage和help字段的内容,否则就只显示usage字段的内容。


U_BOOT_CMD宏在include/command.h中定义:

#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \

cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}


##”与“#”都是预编译操作符,“##”有字符串连接的功能,“#”表示后面紧接着的是一个字符串。

其中的cmd_tbl_t在include/command.h中定义如下:

struct cmd_tbl_s {

char *name; /* 命令名 */

int maxargs; /* 最大参数个数 */

int repeatable; /* 是否自动重复 */

int (*cmd)(struct cmd_tbl_s *, int, int, char *[]); /* 响应函数 */

char *usage; /* 简短的帮助信息 */

#ifdef CONFIG_SYS_LONGHELP

char *help; /* 较详细的帮助信息 */

#endif

#ifdef CONFIG_AUTO_COMPLETE

/* 自动补全参数 */

int (*complete)(int argc, char *argv[], char last_char, int maxv, char *cmdv[]);

#endif

};

typedef struct cmd_tbl_s cmd_tbl_t;


一个cmd_tbl_t结构体变量包含了调用一条命令的所需要的信息。


其中Struct_Section在include/command.h中定义如下:

#define Struct_Section __attribute__ ((unused,section (".u_boot_cmd")))

凡是带有__attribute__ ((unused,section (".u_boot_cmd"))属性声明的变量都将被存放在".u_boot_cmd"段中,并且即使该变量没有在代码中显式的使用编译器也不产生警告信息。

在U-Boot连接脚本u-boot.lds中定义了".u_boot_cmd"段:

. = .;

__u_boot_cmd_start = .; /*将 __u_boot_cmd_start指定为当前地址 */

.u_boot_cmd : { *(.u_boot_cmd) }

__u_boot_cmd_end = .; /* 将__u_boot_cmd_end指定为当前地址 */


这表明带有“.u_boot_cmd”声明的函数或变量将存储在“u_boot_cmd”段。这样只要将U-Boot所有命令对应的cmd_tbl_t变量加上“.u_boot_cmd”声明,编译器就会自动将其放在“u_boot_cmd”段,查找cmd_tbl_t变量时只要在__u_boot_cmd_start与__u_boot_cmd_end之间查找就可以了。


因此“menu”命令的定义经过宏展开后如下:

cmd_tbl_t __u_boot_cmd_menu __attribute__ ((unused,section (".u_boot_cmd"))) = {menu, 3, 0, do_menu, "menu - display a menu, to select the items to do something\n", " - display a menu, to select the items to do something"}


实质上就是用U_BOOT_CMD宏定义的信息构造了一个cmd_tbl_t类型的结构体。编译器将该结构体放在“u_boot_cmd”段,执行命令时就可以在“u_boot_cmd”段查找到对应的cmd_tbl_t类型结构体。


(3) 实现命令的函数

在cmd_menu.c中添加“menu”命令的响应函数的实现。具体的实现代码略:

int do_menu (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{

/* 实现代码略 */

}


(4) 将common/cmd_menu.c编译进u-boot.bin

在common/Makefile中加入如下代码:

COBJS-$(CONFIG_BOOT_MENU) += cmd_menu.o

在include/configs/mini2440.h加入如代码:

#define CONFIG_BOOT_MENU 1

重新编译下载U-Boot就可以使用menu命令了


(5)menu命令执行的过程

在U-Boot中输入“menu”命令执行时,U-Boot接收输入的字符串“menu”,传递给run_command函数。run_command函数调用common/command.c中实现的find_cmd函数在__u_boot_cmd_start与__u_boot_cmd_end间查找命令,并返回menu命令的cmd_tbl_t结构。然后run_command函数使用返回的cmd_tbl_t结构中的函数指针调用menu命令的响应函数do_menu,从而完成了命令的执行。


推荐阅读:

1.我们吃蛋糕,手中的盘子小,却可以吃掉大蛋糕,RAM就是这样运行比自身更大的程序

2.工资等于零花钱!坚决不上市的华为,2017年给员工这么多分红和奖金

3.切勿把方法当成捷径,一位嵌入式er的学习心得分享

4.嵌入式系统学习之Openwrt与其它系统架构对比



    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存