cnsenti中文情绪情感分析库
中文情感分析库(Chinese Sentiment))可对文本进行情绪分析、正负情感分析。对了,强调一下,这是大邓出品的python第三方包^_^,大家可以通过pip实现安装。
github地址
https://github.com/thunderhit/cnsenti
pypi地址
https://pypi.org/project/cnsenti/
特性
情感分析默认使用的知网Hownet
情感分析可支持导入自定义txt情感词典(pos和neg)
情绪分析使用大连理工大学情感本体库,可以计算文本中的七大情绪词分布
方法一
由于pip默认从pypi站点下载cnsenti安装包,速度会比较慢,这样容易出现安装失败,多试几次即可。
pip install cnsenti
方法二
更改到国内镜像,可以加速下载安装。由于是新上传的库,可能短时间内国内镜像没有收录,等一两天即可。
pip install cnsenti -i https://pypi.tuna.tsinghua.edu.cn/simple/
中文文本情感词正负情感词统计
from cnsenti import Sentiment
senti = Sentiment()
test_text= '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
result = senti.sentiment_count(test_text)
print(result)
Run
{'words': 24,
'sentences': 2,
'pos': 4,
'neg': 0}
中文文本情绪统计
from cnsenti import Emotion
emotion = Emotion()
test_text = '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
result = emotion.emotion_count(test_text)
print(result)
Run
{'words': 22,
'sentences': 2,
'好': 0,
'乐': 4,
'哀': 0,
'怒': 0,
'惧': 0,
'恶': 0,
'惊': 0}
cnsenti包括Emotion和Sentiment两大类,其中
Emotion 情绪计算类,包括emotion_count(text)方法
Sentiment 正负情感计算类,包括sentimentcount(text)和sentimentcalculate(text)两种方法
4.1 emotion_count(text)
emotion_count(text)y用于统计文本中各种情绪形容词出现的词语数。使用大连理工大学情感本体库词典,支持七种情绪统计(好、乐、哀、怒、惧、恶、惊)。
from cnsenti import Emotion
emotion = Emotion()
test_text = '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
result = emotion.emotion_count(test_text)
print(result)
返回
{'words': 22,
'sentences': 2,
'好': 0,
'乐': 4,
'哀': 0,
'怒': 0,
'惧': 0,
'恶': 0,
'惊': 0}
其中
words 中文文本的词语数
sentences 中文文本的句子数
好、乐、哀、怒、惧、恶、惊 text中各自情绪出现的词语数
4.2 sentiment_count(text)
隶属于Sentiment类,可对文本text中的正、负面词进行统计。默认使用Hownet词典,后面会讲到如何导入自定义正、负情感txt词典文件。这里以默认hownet词典进行统计。
from cnsenti import Sentiment
senti = Sentiment()
test_text = '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
result = senti.sentiment_count(test_text)
print(result)
Run
{'words': 24,
'sentences': 2,
'pos': 4,
'neg': 0}
其中
words 文本中词语数
sentences 文本中句子数
pos 文本中正面词总个数
neg 文本中负面词总个数
4.3 sentiment_calculate(text)
隶属于Sentiment类,可更加精准的计算文本的情感信息。相比于sentimentcount只统计文本正负情感词个数,sentimentcalculate还考虑了
情感词前是否有强度副词的修饰作用
情感词前是否有否定词的情感语义反转作用
比如
from cnsenti import Sentiment
senti = Sentiment()
test_text = '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
result1 = senti.sentiment_count(test_text)
result2 = senti.sentiment_calculate(test_text)
print('sentiment_count',result1)
print('sentiment_calculate',result2)
Run
sentiment_count
{'words': 22,
'sentences': 2,
'pos': 4,
'neg': 0}
sentiment_calculate
{'sentences': 2,
'words': 22,
'pos': 27.0,
'neg': 0.0}
4.4 自定义词典
cnsenti中只有Sentiment类支持正负情感词典自定义,自定义词典需要满足
必须为txt文件
原则上建议encoding为utf-8
txt文件每行只有一个词
这部分我放到test文件夹内,代码和自定义词典均在test内,所以我使用相对路径设定自定义词典的路径
|test
|---代码.py
|---正面词自定义.txt
|---负面词自定义.txt
代码.py文件内
from cnsenti import Sentiment
senti = Sentiment(pos='正面词自定义.txt', #正面词典txt文件相对路径
neg='负面词自定义.txt', #负面词典txt文件相对路径
encoding='utf-8') #两txt均为utf-8编码
经过上面的设置就可以使用自定义词典。
补充:
我设计的这个库目前仅能支持两类型pos和neg,如果你的研究问题是两分类问题,如好坏、美丑、善恶、正邪、友好敌对,你就可以定义两个txt文件,分别赋值给pos和neg,就可以使用cnsenti库。
目前比较有可解释性的文本分析方法是词典法,算法逻辑都很清晰。词典的好坏决定了情感分析的好坏。如果没有词典,也就限制了你进行文本情感计算。
目前大多数人使用的是形容词情感词典,如大连理工大学情感本体库和知网Hownet,优点是直接拿来用,缺点也很明显,对于很多带情感却无形容词的文本无能为力。如这手机很耐摔, 使用形容词情感词典计算得分pos和neg均为0。类似问题在不同研究对象的文本数据应该都是挺普遍的,所以人工构建情感词典还是很有必要的。
我封装了刘焕勇基于so_pmi算法的新词发现代码,将该库其命名为wordexpansion。wordexpansion可以极大的提高提高自定义词典的构建速度,感兴趣的童鞋详情可以访问wordexpansion项目地址
如果您是经管人文社科专业背景,编程小白,面临海量文本数据采集和处理分析艰巨任务,个人建议学习《python网络爬虫与文本数据分析》视频课。作为文科生,一样也是从两眼一抹黑开始,这门课程是用五年时间凝缩出来的。自认为讲的很通俗易懂o( ̄︶ ̄)o,
python入门
网络爬虫
数据读取
文本分析入门
机器学习与文本分析
文本分析在经管研究中的应用
感兴趣的童鞋不妨 戳一下《python网络爬虫与文本数据分析》进来看看~