Remote Sensing | 如何用遥感工具监测潮湿热带林退化?
随着全球气候急剧变化和人类活动的加剧,保护可承载地球一半以上物种的热带森林变得至关重要[1]。在潮湿的热带林中,若现场人工收集森林组成、结构和再生等数据,既费时又难以获得,而使用遥感工具则会使数据收集和空间化指标变得更容易实现[2](图1)。
图1:潮湿热带林
(Photo by Wuilmar Matias-Morales on Unsplash)
(https://unsplash.com/photos/YExv3wUWYBc)
目前,森林砍伐已得到了充分的记录[3,4],而关于森林退化方面的研究却少之又少[5–7]。比利时列日大学的Philippe Lejeune 教授及其研究团队对目前所有使用遥感工具来研究潮湿热带林退化的论文做了系统性回顾,并将综述结果发表于Remote Sensing 期刊。经过筛选,遥感测量潮湿热带林退化的论文数量很少,只有123篇符合本次筛选的标准(图2)。
图2:使用遥感工具分析潮湿热带森林退化的现有研究成果
遥感在监测潮湿热带林退化指标中的应用
应用一
卫星监测结构指标
结构指标是监测潮湿热带林退化研究中最常用的指标,尤其是林冠间隙和景观碎片化。
碎片化是指在道路扩展、农业或矿业发展等大尺度现象影响下,大片、连续的森林区域被分解成众多较小森林的过程 [8]。由于碎片的尺度很大,因此,可通过高分辨率(10–50 m)的卫星轻松测量[9-11]。该数据可定期获得,且成本较低。
应用二
激光雷达与光学图像
对林冠间隙的检测和精确测量需要用到激光雷达[12,13]或高分辨率的光学图像,但光学数据结果的准确性会受到图像分辨率限制,因此需要使用极高分辨率光学数据。它们能够检测小型干扰(SPOT, WorldView-2, GeoEye-1)[14,15],分析生物量的树冠边界(SPOT,WorldView-2)[16-18],识别树木种类(WorldView-3)[19,20]或结合机载激光雷达(Planet Dove)进行生物量测量[21,22]。但是,这些数据需要付费,且受到热带地区多云的影响,无法通过卫星进行定期监测。同时,机载激光雷达成本高昂,无法大规模应用。
应用三
雷达
高分辨率合成孔径雷达(High-resolution synthetic aperture radar, SAR)(10–50 m)也可以在监测林冠间隙时呈现良好结果[23],但无法检测到小型干扰[24]。目前雷达数据在具有高生物量的潮湿热带林中已达到饱和状态,且通过混合雷达和光学数据在监测森林退化方面取得了良好的结果[25]。
应用四
多种遥感工具配合使用
多时相方法也可以呈现良好的结果。如使用Landsat 8(30 m)和Sentinel-2(10 m),通过时间方法比较干扰前后的图像来检测冠层变化。虽然两种数据检测精度相似,但Landsat 影像测绘的面积要比Sentinel-2 大得多[26]。通过同时段不同Landsat 场景间的对比,也可检测森林冠层扰动,最小测绘范围为0.005 ha[27]。
地上生物量、碳储量以及其他结构参数(如树干直径)是表征森林退化的主要指标。为了对生物量进行建模,需要在存量图或树木比例下,对田间测量值(如,地上生物量、体积等)与遥感数据(航空LiDAR [28],光学[29] 雷达[30])的度量之间进行回归。如,将茎部直径与冠部面积相关联来计算地上生物量,后通过分割IKONOS 图像(1–4 m)来描绘树冠。使用无人机可以以低成本来获取有关森林数字表面模型的结构及其光谱特征的信息,至少是非常高分辨率的RGB数据。
通过过滤上下激光雷达返回值,可以非常精确地计算出数字地面模型和数字地形模型[31,32](图3)。在可见土壤的研究区域内,当有足够大,数量众多且分布均匀的树冠间隙时,可以通过摄影测量点云来生成数字地形模型 [33,34]。但在茂密的潮湿热带林中,则必须采用其他方法,如通过内插在野外获取的GPS(Global Positioning System, 全球定位系统)高度表点来产生数字地形模型[35]。但后者取决于森林覆盖的结构和性质,因为这将严重影响地面GPS 信号的接收质量。尽管与卫星数据相比,激光雷达可覆盖的空间范围有限,但当与无人机技术相结合后,这种方法显示出巨大的潜力。
图3:通过过滤上下激光雷达返回值计算相对密度模型的示意图
总结
在大面积覆盖但又难以进入的热带雨林中,似乎必须借助遥感工具来衡量森林退化程度。相关指标已有大量数据可供使用,且将不同类型的数据混合使用时可获得良好的结果,如激光雷达或雷达和光学数据。目前高分辨率卫星数据已经为森林监测提供了宝贵的信息,暂时还没有专门监测潮湿热带林结构的高性能卫星,但GEDI(图4)和BIOMASS(图5)数据即将填补该项空缺。激光雷达和无人机在野外和卫星数据之间架起了一座良好的桥梁。尽管不再需要证明激光雷达的性能,但无人机具有的巨大潜力值得关注。
图4:国际空间站(上)和日本实验舱–暴露设施(下)安装了以金色突出显示的GEDI
(图片来源:https://gedi.umd.edu/instrument/instrument-overview/)
图5:Biomass 卫星
(图片来源:
https://www.esa.int/ESA_Multimedia/Images/2019/02/Biomass_mission)
参考文献:
1. Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing Human Dominance of Tropical Forests. Science 2015, 349, 827–832.
2. Sanchez-Azofeifa, A.; Antonio Guzmán, J.; Campos, C.A.; Castro, S.; Garcia-Millan, V.; Nightingale, J.; Rankine, C. Twenty-First Century Remote Sensing Technologies Are Revolutionizing the Study of Tropical Forests. Biotropica 2017, 49, 604–619.
3. Song, X.; Hansen, M.C.; Stephen, V.; Peter, V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643.
4. Hansen, M.C.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.V.; Goetz, S.J.J.; Loveland, T.R.R.; et al. High-Resolution Global Maps Of. Science 2013, 342, 850–854.
5. Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse Gas Emissions from Tropical Forest Degradation: An Underestimated Source. Carbon Balance Manag. 2017, 12, 1–11.
6. Lund, H.G. What Is a Degraded Forest? White Paper Prepared for FAO: Gainesville, VA, USA, 2009.
7. Sasaki, N.; Putz, F.E. Critical Need for New Definitions of “Forest” and “Forest Degradation” in Global Climate Change Agreements. Conserv. Lett. 2009, 2, 226–232.
8. Laurance, W.F.; Camargo, J.L.C.; Fearnside, P.M.; Lovejoy, T.E.; Williamson, G.B.; Mesquita, R.C.G.; Meyer, C.F.J.; Bobrowiec, P.E.D.; Laurance, S.G.W. An Amazonian Rainforest and Its Fragments as a Laboratory of Global Change. Biol. Rev. 2018, 93, 223–247.
9. Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Zhang, G.; Duong, N.D.; Hazarika, M.; Wikantika, K.; Takeuhci, W.; Moore, B. A 50-m Forest Cover Map in Southeast Asia from ALOS / PALSAR and Its Application on Forest Fragmentation Assessment. PLoS ONE 2014, 9.
10. Da Ponte, E.; Roch, M.; Leinenkugel, P.; Dech, S.; Kuenzer, C. Paraguay’s Atlantic Forest Cover Loss e Satellite-Based Change Detection and Fragmentation Analysis between 2003 and 2013. Appl. Geogr. 2017, 79, 37–49.
11. Broadbent, E.N.; Asner, G.P.; Keller, M.; Knapp, D.E.; Oliveira, P.J.C.; Silva, J.N. Forest Fragmentation and Edge Effects from Deforestation and Selective Logging in the Brazilian Amazon. Biol. Conserv. 2008, 141, 1745–1757.
12. Asner, G.P.; Kellner, J.R.; Kennedy-Bowdoin, T.; Knapp, D.E.; Anderson, C.; Martin, R.E. Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS ONE 2013, 8, 1–10.
13. Boyd, D.S.; Hill, R.A.; Hopkinson, C.; Baker, T.R. Landscape-Scale Forest Disturbance Regimes in Southern Peruvian Amazonia. Ecol. Soc. Am. 2017, 23, 1588–1602.
14. Pithon, S.; Jubelin, G.; Guitet, S.; Gond, V. A Statistical Method for Detecting Logging-Related Canopy Gaps Using High-Resolution Optical Remote Sensing. Int. J. Remote Sens. 2013, 34, 700–711.
15. Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E.O.C. Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sens. 2019, 11, 817.
16. Phua, M.H.; Ling, Z.Y.; Coomes, D.A.; Wong, W.; Korom, A.; Tsuyuki, S.; Ioki, K.; Hirata, Y.; Saito, H.; Takao, G. Seeing Trees from Space: Above-Ground Biomass Estimates of Intact and Degraded Montane Rainforests from High-Resolution Optical Imagery. IForest 2017, 10, 625–634.
17. Loubota Panzou, G.J.; Fayolle, A.; Feldpausch, T.R.; Ligot, G.; Doucet, J.L.; Forni, E.; Zombo, I.; Mazengue, M.; Loumeto, J.J.; Gourlet-Fleury, S. What Controls Local-Scale Aboveground Biomass Variation in Central Africa? Testing Structural, Composition and Architectural Attributes. For. Ecol. Manag. 2018, 429, 570–578.
18. Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.M.; Zortea, M.; Gloor, E.; Phillips, O.L.; de Souza Filho, C.R.; Shimabukuro, Y.E.; Aragão, L.E.O.C. Individual Tree Crown Delineation in a Highly Diverse Tropical Forest Using Very High Resolution Satellite Images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377.
19. Cross, M.; Scambos, T.; Pacifici, F.; Vargas-Ramirez, O.; Moreno-Sanchez, R.; Marshall, W. Classification of Tropical Forest Tree Species Using Meter-Scale Image Data. Remote Sens. 2019, 11, 1411.
20. Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree Species Classification in Tropical Forests Using Visible to Shortwave Infrared WorldView-3 Images and Texture Analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131.
21. Csillik, O.; Asner, G.P. Aboveground Carbon Emissions from Gold Mining in the Peruvian Amazon Aboveground Carbon Emissions from Gold Mining in the Peruvian Amazon. Environ. Res. Lett. 2020, 15, 1–11.
22. Csillik, O.; Kumar, P.; Mascaro, J.; O’Shea, T.; Asner, G.P. Monitoring Tropical Forest Carbon Stocks and Emissions Using Planet Satellite Data. Sci. Rep. 2019, 9, 1–12.
23. Deutscher, J.; Perko, R.; Gutjahr, K.; Hirschmugl, M.; Schardt, M. Mapping Tropical Rainforest Canopy Disturbances in 3D by COSMO-SkyMed Spotlight InSAR-Stereo Data to Detect Areas of Forest Degradation. Remote Sens. 2013, 5, 648–663.
24. Joshi, N.; Mitchard, E.T.A.; Woo, N.; Torres, J.; Moll-Rocek, J.; Ehammer, A.; Collins, M.; Jepsen, M.R.; Fensholt, R. Mapping Dynamics of Deforestation and Forest Degradation in Tropical Forests Using Radar Satellite Data. Environ. Res. Lett. 2015, 10.
25. Bourgoin, C.; Blanc, L.; Bailly, J.-S.; Cornu, G.; Berenguer, E.; Oszwald, J.; Tritsch, I.; Laurent, F.F.; Hasan, A.; Sist, P.; et al. The Potential of Multisource Remote Sensing for Mapping the Biomass of a Degraded Amazonian Forest. Forests 2018, 9, 303.
26. Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961.
27. Langner, A.; Miettinen, J.; Kukkonen, M.; Vancutsem, C.; Simonetti, D.; Vieilledent, G.; Verhegghen, A.; Gallego, J.; Stibig, H.J. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia. Remote Sens. 2018, 10, 544.
28. D’Oliveira, M.V.N.; Reutebuch, S.E.; Mcgaughey, R.J.; Andersen, H. Estimating Forest Biomass and Identifying Low-Intensity Logging Areas Using Airborne Scanning Lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491.
29. Pfeifer, M.; Kor, L.; Nilus, R.; Turner, E.; Cusack, J.; Lysenko, I.; Khoo, M.; Chey, V.K.; Chung, A.C.; Ewers, R.M. Mapping the Structure of Borneo’s Tropical Forests across a Degradation Gradient. Remote Sens. Environ. 2016, 176, 84–97.
30. Cassol, H.L.G.; Carreiras, D.B.; Moraes, E.C.; Eduardo, L.; De Arag, C.; Val, C.; Silva, D.J.; Quegan, S.; Shimabukuro, Y.E. Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon. Remote Sens. 2019, 11, 59.
31. Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; Dos-Santos, M.N. Quantifying Long-Term Changes in Carbon Stocks and Forest Structure from Amazon Forest Degradation Quantifying Long-Term Changes in Carbon Stocks and Forest Structure from Amazon Forest Degradation. Environ. Res. Lett. 2018, 13.
32. Kronseder, K.; Ballhorn, U.; Böhmc, V.; Siegert, F. Above Ground Biomass Estimation across Forest Types at Different Degradation Levels in Central Kalimantan Using Lidar Data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 37–48.
33. Swinfield, T.; Lindsell, J.A.; Williams, J.V.; Harrison, R.D.; Gemita, E.; Schönlieb, C.B.; Coomes, D.A. Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sens. 2019, 11, 928.
34. Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61.
35. Zahawi, R.A.; Dandois, J.P.; Holl, K.D.; Nadwodny, D.; Reid, J.L.; Ellis, E.C. Using Lightweight Unmanned Aerial Vehicles to Monitor Tropical Forest Recovery. Biol. Conserv. 2015, 186, 287–295.
Remote Sensing (ISSN 2072-4292; IF: 4.509, Cite Score 6.1) 是一个与遥感学科相关的国际型开放获取期刊。其期刊范围涵盖遥感 科学所有领域,从传感器的设计、验证和校准,到遥感在地球科学、环境生态、土木建筑等各方面的广泛应用。Remote Sensing 采取单盲同行评审,一审周期约为 19天,文章从接收到发表仅需 2.9 天。
识别二维码
阅读英文原文
原文出自Remote Sensing 期刊
Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A.How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087.
往期回顾:
Remote Sensing | 地质灾害实时检测成为可能—雷达功不可没
版权声明:
*翻译作者:Cindy Zhang
*本文内容由MDPI中国办公室编辑负责撰写,一切内容请以英文原版为准。如需转载,请邮件联系:
mdpicnmarketing@mdpi.com
*文中部分图片来自网络
点击左下方“阅读原文”,了解Remote Sensing 期刊更多内容。
喜欢今天的内容?不如点个“在看”吧!