七年级上册数学2.1节《有理数》
电子课本
点击图片,查看大图
▼▼▼▼
微课视频
微课视频1:
更的多精彩视频,同学们可以选择观看哦!
微课视频2:
知识点讲解
同步练习
2.1 有理数
辨误区 正数和负数的理解
①对于正数和负数的意义,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数.
②负数是在正数前面加上一个“-”号,如-5,-(+7)等都是负数,负数中的“-”号不能省略,如-5省略“-”号就是5,变成正数了.
(3)0:0既不是正数也不是负数.
0是正数和负数的分界点,如温度计上的0 ℃,也是一个特定的温度,0 ℃以下为负数,0 ℃以上为正数.
【例1】 下列各数中,哪些数是正数?哪些数是负数?
2.有理数
(1)定义:整数与分数统称为有理数.
(2)有理数的判断方法:
①正整数、0、负整数都是有理数.
②正分数和负分数都是有理数.
(3)拓展发散:
引入负数后,数的范围扩大为有理数,奇数和偶数也由自然数范围扩大到有理数范围.偶数不仅有正偶数和0,还有负偶数;奇数也包括正奇数和负奇数.
【例2】 下列说法正确的有( ).
①-5是有理数
②3是有理数
③0.3不是有理数
④-2是偶数
A.①②③B.①②③④C.②③④D.①②④
解析:负整数是有理数,正分数是有理数,有限小数可化为分数,因此是有理数;偶数包括正偶数、0和负偶数.
答案:D
3.有理数的分类方法
(1)按定义分(两分):
(2)按性质分(三分):
“不重复”的意思是说,每一个数只能属于其中的一类,不能出现某一个数属于多类的情况.如,将有理数分为非负数、非正数两类就是错误的.因为0这个数被重复分类了,把0既分在了非负数中,又分在了非正数中.
“不遗漏”的意思是说,分类时,不能遗漏某些数.如,将有理数分为正有理数与负有理数两类,显然遗漏了0.
【例3】 把下面各有理数填在相应的大括号里:
正数集合:{ …};
负数集合:{ …};
整数集合:{ …};
分数集合:{ …};
正分数集合:{ …};
负分数集合:{ …}.
分析:根据正数、负数;整数、分数;正分数、负分数的定义可完成本题.
点评:解答有理数的分类问题,要明确分类的标准,在将有理数填入相应的集合中时,注意不要发生遗漏和错填现象.
4.具有相反意义的量及应用
(1)具有相反意义的量:
①向东向西、买进卖出、零上零下、收入和支出、运进和运出……,都具有相反的意义.如“向东5米”和“向西3米”就是一对具有相反意义的量.
②特征:a.意义相反;b.成对出现.
(2)表示方法:
用正数和负数表示具有相反意义的量.
当规定其中一个量用正数表示时,那么另一个就用负数表示.0是正负数的界限,是表示“基准”的数.
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
【例4-1】 阅读下面的材料,从中找出一对具有相反意义的量,并用正数和负数表示它们.
非洲“撒哈拉”是世界上著名的大沙漠,昼夜温差非常大,一个科学考察队测得某一天中午12时的气温是零上53 ℃,下午2时的气温是零上58 ℃,晚上10时的气温是零下34 ℃.
分析:“零上温度”与“零下温度”是具有相反意义的量,规定其中的一个量为正,则另一个量为负.
解:具有相反意义的量是“零上温度”和“零下温度”.把零上记为正,则零上53 ℃和零上58℃分别记作+53 ℃和+58 ℃,零下34 ℃记作-34 ℃.
【例4-2】 一种零件的尺寸在图纸上标注是10±0.05(单位:毫米),表示这种零件的标准尺寸是多少毫米?加工时,符合要求的零件最大不能超过多少毫米?最小不能少于多少毫米?
分析:由标注“10±0.05”可知,10是指标准尺寸的大小,+0.05说明在10毫米的基础上,最多只能多出0.05毫米,-0.05说明在10毫米的基础上,最多只能比标准尺寸少0.05毫米.
解:这种零件的标准尺寸是10毫米;符合要求的零件最大不能超过10.05毫米,最小不能少于9.95毫米.
七年级下册语文微课、全解(全集)
八年级下册语文微课、全解(全集)
九年级下册语文微课、全解(全集)
©原创作品 授权发布(公众号转载须授权)
图片来源:网络 责任编辑:良知君
主编:良知培训学校