Sqoop or Datax
前言
sqoop
sqoop 是 apache 旗下一款“Hadoop中的各种存储系统(HDFS、HIVE、HBASE) 和关系数据库(mysql、oracle、sqlserver等)服务器之间传送数据”的工具。
导入数据:MySQL,Oracle 导入数据到 Hadoop 的 HDFS、HIVE、HBASE 等数据存储系统
导出数据:从 Hadoop 的文件系统中导出数据到关系数据库 mysql 等 Sqoop 的本质还是一个命令行工具。
将导入或导出命令翻译成 MapReduce 程序来实现
在翻译出的 MapReduce 中主要是对InputFormat 和
OutputFormat 进行定制
datax
简介
DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
Reader:Reader为数据采集模块,负责采集数据源的数据,将数据发送给Framework。
Writer:Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
Framework:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。
DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0
DataX调度流程:
举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。DataX的调度决策思路是:
DataXJob根据分库分表切分成了100个Task。
根据20个并发,DataX计算共需要分配4个TaskGroup。
4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。
对比
功能 | datax | sqoop |
运行模式 | 单进程多线程 | mr |
hive读写 | 单机压力大 | 扩展性好 |
分布式 | 不支持 | 支持 |
运行信息 | 运行时间,数据量,消耗资源,脏数据稽核 | 不支持 |
流量控制 | 支持 | 不支持 |
社区 | 开源不久,不太活跃 | 活跃 |
总结
对于sqoop和datax,如果只是单纯的数据同步,其实两者都是ok的,但是如果需要集成在大数据平台,还是比较推荐使用datax,原因就是支持流量控制,支持运行信息收集,及时跟踪数据同步情况。
附:
(有很多朋友私信问datax能操作哪些数据库或者文件,以下把datax各子工程贴出来了,下面有的就是支持的,否则就需要二次开发了)