查看原文
其他

多重中介效应的检验

统计分析 自我整合 2023-02-24


多重中介效应的检验

(1)基本类型

对于情景比较复杂的研究,经常需要多个中介变量才能清晰地解释自变量对因变量的作用,这就涉及多重中介(multiple mediation)模型。根据多个中介变量之间是否存在相互影响,多重中介模型可以分为单步多重中介模型多步多重中介模型(Hayes, 2009)。

单步多重中介模型,也称为并行多重中介模型,是指中介变量之间不存在相互影响多步多重中介模型,也称为链式多重中介模型,是指中介变量之间存在影响关系,中介变量表现出顺序性特征,形成中介链;另外更为复杂的模型还包括多自变量、多因变量和多中介变量的复合式多重中介(柳士顺, 凌文辁, 2009)。

多重中介效应分析可以从3 个角度进行:一是总的中介效应(total mediation effect),即估计和检验所有间接效应的总和;二是特定路径的中介效应(specific mediation effect),即估计和检验某个感兴趣的特定路径的间接效应;三是对比中介效应,即估计和检验某两个路径的间接效应的差异

(2)多重中介分析方法

第一,多重中介分析的方法可包括spss的因果逐步回归法,一般是对每条路径单独做回归,基本程序与上文介绍相同,但该方法局限太多;

第二,多重中介模型因为涉及的变量较多、路径比较复杂,即使只涉及显变量,一般也要使用结构方程模型进行分析,基本程序与上文介绍相同。

第三,Preacher和Hayes(2008)提出使用Bootstrap进行多个并行的中介效应分析检验多重中介效应,认为使用Bootstrap方法分析多重并列中介效应。一般可以使用PROCESS插件和MEDIATE插件。该方法可获得更多信息,一是可以检验所有并列中介变量发挥中介效应的总效应;二是可以观测在排除其它中介路径后,某一单个中介路径的效应大小;三是可以比较不同中介路径的中介效应大小,并检验是否有显著差异。从现有研究来看,多重中介效应分析主要包括结构方程模型方法和非参数百分位Bootstrap方法。

(三)结果报告的方式

结果报告的方式,以“姜永志,李笑燃,白晓丽,阿拉坦巴根,王海霞,刘勇.大学生神经质人格、手机网络服务偏好与手机网络过度使用的关系.心理与行为研究,2016(2)”为例:

按照Zhao等(2010)提出的中介分析程序,参照Preacher和Hayes(2013)提出的Bootstrap方法进行中介检验,本研究通过抽取5000个样本估计中介效应的95%置信区间进行中介效应检验。以神经质作为自变量、娱乐服务和信息服务作为中介变量、MIEU总分作为因变量,分别带入PROCESS程序,结果发现,在95%置信区间下,中介模型的总效应Effect为0.401,中介模型检验结果的置信区间不包括0(LLCI=0.156,ULCI=0.742),中介模型成立;以娱乐服务为中介变量的检验结果不包括0(LLCI=0.127,ULCI=0.696),间接效应Effect为0.335,表明娱乐服务的中介效应显著。以信息服务为中介变量的检验结果包括0(LLCI=0.006,ULCI=0.226),间接效应Effect为0.066,结果表明信息服务的中介效应显著

来源:姜永志老师


声明:部分文章和信息来源于互联网,如转载内容涉及版权等问题,请立即与小编联系,我们将迅速采取适当的措施。

感谢您抽出  · 来阅读此文

更多精彩请点击下列分类文章

↓↓↓

一周年 | 微信公众号改版通知

圣诞节礼物 | 绘画心理培训课程

中介效应 | 因果逐步回归检验法

经典中介效应检验的质疑(一)

经典中介效应检验的质疑(二)

治疗

“我认为你捕捉到了我身上的一些东西。我觉得你在做的某些事在某种程度上记录了我,我宁愿帮助你而不是冲你发脾气。因此我愿意与你一起探讨这个问题。你在别人身上有过这种体验吗?”

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存