查看原文
其他

字节跳动开源最新GAN压缩算法,算力消耗可减少至1/46

上一篇:深夜看了张一鸣的微博,让我越想越后怕



字节跳动近期开源了一项代号为OMGD的压缩技术。这是字节自研的GAN(生成对抗网络)压缩算法,在保证生成效果不变的前提下,算力消耗最低可以减少到原来的1/46,相比之前业界的最佳压缩效果提升一倍多。据悉,这项技术的论文已入选国际计算机视觉会议ICCV 2021。
字节跳动技术团队发表的自研GAN压缩算法论文

GAN是人工智能领域重要的深度学习模型,在图像生成、音乐生成和视频生成等方面应用广泛,还可以提高图像质量,实现图像风格化、图像着色等任务。漫画特效等人们常用的短视频道具,就是通过GAN实现的。

由于GAN对计算资源和存储空间的需求巨大,模型难以直接部署到手机、Pad等移动设备上,业界一直在努力改进GAN的压缩方法。2020年,麻省理工学院、Adobe和上海交通大学的研究者们提出一种GAN压缩算法,将算力消耗成功减少到1/21。此次字节跳动提出的OMGD方法则进一步提升了压缩能力。

OMGD(Online Multi-Granularity Distillation)意为“在线多粒度蒸馏”。据字节跳动技术团队的论文显示,该算法能灵活地在训练过程中优化并压缩GAN模型,从而实现更好的图像效果和更少的计算成本。

测试数据表明,OMGD压缩算法对Pix2Pix和CycleGAN这两种常用的GAN解决方案效果显著。Pix2Pix和CycleGAN主要应用于图像到图像的“翻译”,比如将照片转换为绘画,对黑白图片着色等。OMGD压缩算法可使其算力消耗分别减少到原来的1/40和1/46。

目前,OMGD压缩算法已在抖音等产品中落地,为用户提供更丰富的视频创作能力。相关技术代码也已发布在开源社区,以帮助从业者提升GAN的创新和应用效率。迄今,字节跳动已开源了机器学习平台Klever、联邦学习平台Fedlearner、高性能分布式训练框架BytePS 、LightSeq推理和训练引擎等重磅项目。

节能环保是字节跳动一个重要的技术研究方向。在不久前的自然语言处理领域国际顶会ACL 2021上,字节跳动的词表学习方案获得年度唯一的“最佳论文”大奖,该论文同样极具节能价值,相比主流词表可以节约92%的算力。

OMGD论文链接:https://arxiv.org/abs/2108.06908

开源项目链接:https://github.com/bytedance/OMGD

感谢您的阅读,也欢迎您发表关于这篇文章的任何建议,关注我,技术不迷茫!小编到你上高速。
    · END ·
最后,关注公众号互联网架构师,在后台回复:2T,可以获取我整理的 Java 系列面试题和答案,非常齐全。


正文结束


推荐阅读 ↓↓↓

1.不认命,从10年流水线工人,到谷歌上班的程序媛,一位湖南妹子的励志故事

2.如何才能成为优秀的架构师?

3.从零开始搭建创业公司后台技术栈

4.程序员一般可以从什么平台接私活?

5.37岁程序员被裁,120天没找到工作,无奈去小公司,结果懵了...

6.IntelliJ IDEA 2019.3 首个最新访问版本发布,新特性抢先看

7.这封“领导痛批95后下属”的邮件,句句扎心!

8.15张图看懂瞎忙和高效的区别!

一个人学习、工作很迷茫?


点击「阅读原文」加入我们的小圈子!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存