刷新量子纠缠纪录:实现51量子比特的真纠缠
量子纠缠,相信墨子沙龙的读者们早就不陌生了。2022年诺贝尔物理学奖授予量子纠缠的相关研究,更让它刷屏了每个人的朋友圈,飞入寻常百姓家。所谓量子纠缠,它说的是,在量子世界,粒子之间可以具有一种奇特的联系,而任何经典物理理论都无法描述这种关联。量子力学的奠基人之一薛定谔就说过:“纠缠是量子力学的精髓,正是它使得量子力学和经典物理的思维方式彻底分道扬镳。”(推荐观看“量子纠缠:粒子间鬼魅般的关联 | 量子微课堂”)
说起量子纠缠,你脑海中是不是马上浮现出了上面类似的画面,或者是:
量子纠缠的示意图(来自Quanta Magazine)
这些图像显明地表现出,相隔遥远的两个粒子通过千丝万缕的神秘联系而绑在一起,它们的行为不再独立,而是彼此“同步”,组成了一个整体:一个粒子状态的改变会瞬间影响另一个粒子的状态。是不是简单且奇妙?
大自然比我们想象的还要有意思,纠缠不仅仅限于两个粒子之间,多个粒子的纠缠更复杂、也更有意思,有丰富的内涵值得去探索!这就是多体量子纠缠(multipartite entanglement)。
一个多体系统含有很多“粒子”(这里的粒子可以是光子、电子,也可以是原子、超导比特等等),如果其中两个粒子纠缠在一起,那么这是不是一个量子纠缠的多体系统呢?是的,哪怕只有一对粒子纠缠了,这个系统就没办法用任何经典模型来描述,它就是一个纠缠体系。就像,只有一个牛肉粒的牛肉面仍然是红烧牛肉面。不过,我们更喜欢有丰富牛肉的牛肉面。我们也希望实现有着更丰富纠缠的“真·多体纠缠”。
(图片来自网络)
所谓真多体纠缠( genuine multipartite entanglement),它是这样一种状态:如果我们把一个多体系统任意划分为两部分,不论我们如何划分,划分后的两部分之间都存在纠缠,那么我们就说这是一个真多体纠缠体系。假如把每个粒子比喻为珍珠,把粒子间的纠缠比喻为串联珍珠的丝线,那么,这个项链是联通在一起的,无论我们怎么拉扯摆弄,都无法把项链一分为二。真多体纠缠是最强形式的量子纠缠。
(图片来自网络)
不过,要实现大规模的真多体纠缠,面临着极大的挑战。这既体现在制备上——需要对大规模的量子体系具有极高的操控水平,也体现在纠缠态的验证上——对于如此复杂而精微的纠缠结构,我们如何才能知道我们真的实现了真纠缠呢。很多实验技术和理论认知上的难题都需要攻克。
最近,中国科学技术大学潘建伟、朱晓波、彭承志等组成的研究团队与北京大学袁骁合作,取得了重要突破,他们在66量子比特的“祖冲之二号”超导量子处理器上成功制备和验证了高达51个量子比特的真多体纠缠态,研究工作发表在Nature上。
这一工作大大刷新了之前的量子纠缠世界纪录。之前,利用数字的超导量子门实现的最大真多体纠缠态是12量子比特,而在所有物理体系中实现的最大真多体纠缠态也只有29量子比特。
那么,费这么多心力,为什么要实现大规模真多体纠缠呢?
一方面,对它的研究有助于我们更深入地洞悉量子世界的奥秘:量子世界和经典世界的界限在哪里,量子纠缠的本质是什么……另一方面,在量子信息时代,纠缠还是一种重要而独特的资源,“其价值可以和能量、信息、熵及任何其他基本资源相当”。充分了解它、驾驭它,能给我们带来更安全的通信、更快速的计算、更精密的计量……例如,中国科大研究团队这一工作所实现的是一种被称为“簇态”(cluster state)的多体纠缠态,基于簇态,仅仅通过一系列“测量”就可以实现量子计算,甚至通用量子计算。这被称为“基于测量的量子计算”,是不同于通常的“基于量子线路的量子计算”的一种新型量子计算框架。
研究团队制备和验证了51量子比特的一维簇态和30量子比特的二维簇态。为了达成这一目标,他们将单量子比特门和双量子比特门的保真度分别提升到 99.91% 和 99.05%的精度,利用数字的量子门来实现真多体纠缠态的制备(具体过程见下图);另外,利用随机保真度估计方法,减少了验证纠缠态所需的测量次数,完成了对纠缠态的验证。
图来自Nature文章:簇态制备和测量过程。在“祖冲之二号”超导量子处理器上,研究人员使用4层CZ操作可以将所有最邻近量子比特对连接在一起制备簇态,接着用经典计算机产生的随机稳定子测量该量子态。同一层内的CZ门可以同时执行。
图来自Nature文章:一维(上方图)和二维(下方图)簇态的制备和测量保真度。
什么是簇态?它是一种特殊的图态(graph state)。所谓图,是数学和计算机科学中的一个概念,可以简单的理解为是由一些端点和连接端点的线组成的图案。如果我们用图中端点表示量子比特,而用连线表示一对量子比特间的相互作用,这样,这幅图就表示了一种特殊的多量子比特的纠缠态。这种状态就称为“图态”。如果我们把图限定为方格型结构,那么这种图态就称为“簇态”。
(来自Dan Browne, Hans Briegel.One-Way Quantum Computation)
图态和簇态是量子计算的重要资源。通常的超导量子计算是基于量子线路的,通过量子门操控量子比特来执行计算任务,就像经典计算中,通过经典门操控经典比特来进行运算。然而,量子世界中奇特的“测量”(测量带来量子状态的改变)带来了新的可能,以图态或簇态作为资源,仅通过执行单量子比特测量竟然可以执行各种量子算法,甚至实现通用量子计算。这是一个让人惊奇的发现,我们只需要决定对哪些量子比特进行测量,以及测量的时机和顺序、测量的方式(这些选择往往依赖于上一步的测量结果)就能完成量子计算了!(对于特定的量子计算任务,某种纠缠结构的图态可能最适合这一任务,相比簇态会需要更少的量子比特数和测量次数。但实验上,簇态往往更容易制备,而且重要的是,以簇态作为计算资源,也可以实现通用量子计算。)
利用所制备的簇态,基于测量,研究团队还成功地原理性演示了一种量子计算算法:变分量子本征求解算法,展现了这一量子计算方式的广阔应用前景。
图来自Nature文章:基于测量的变分量子本征求解算法原理验证。对于微扰平面码的本征值求解问题,研究人员选择了7个量子比特先制备到二维簇态,对其中3个比特选择不同的测量角度,根据比特测量结果对剩下4个比特同时测量进行能量计算,完成了微扰平面码本征能量求解的演示。
基于测量的量子计算是一种全新的计算框架,长远看,人们多了一条迈向通用量子计算的路径,近期看,也为针对具体实用问题的量子算法设计提供了新的可能。中国科大对这一量子计算方式的原理性演示,是这条新赛道上的重要一步。
由于微信公众号试行乱序推送,您可能不再能准时收到墨子沙龙的推送。为了不与小墨失散, 请将“墨子沙龙”设为星标账号,以及常点文末右下角的“在看”。
转载微信原创文章,请在文章后留言;“转载说明”在后台回复“转载”可查看。为了提供更好的服务,“墨子沙龙”有工作人员就各种事宜进行专门答复:各新媒体平台的相关事宜,请联系微信号“mozi-meiti”;线下活动、线上直播相关事宜,请联系微信号“mozi-huodong”。
墨子是我国古代著名的思想家、科学家,其思想和成就是我国早期科学萌芽的体现。墨子沙龙的建立,旨在传承、发扬科学传统,倡导、弘扬科学精神,提升公民科学素养,建设崇尚科学的社会氛围。
墨子沙龙面向热爱科学、有探索精神和好奇心的普通公众,通过面对面的公众活动和多样化的新媒体平台,希望让大家了解到当下全球最尖端的科学进展、最先进的科学思想,探寻科学之秘,感受科学之美。
墨子沙龙由中国科学技术大学上海研究院及浦东新区南七量子科技交流中心主办,受到中国科大新创校友基金会、中国科学技术大学教育基金会、浦东新区科学技术协会、中国科学技术协会及浦东新区科技和经济委员会等支持。
关于“墨子沙龙”