哈佛大学Xingcai Zhang西交杨哲等封面文章:“纳米子弹”光热-热动力对缺氧肿瘤“精确打击”
点击蓝字
关注我们
热动力治疗(TDT)是一种由高毒性烷基自由基介导的新型非氧依赖型癌症治疗手段,主要利用热分解型自由基引发剂(如偶氮类化合物)受热后可产生的高细胞毒性自由基诱导细胞的凋亡和坏死,可克服由于肿瘤缺氧对传统活性氧(ROS)介导的癌症治疗模式的影响。通过将热动力治疗与光热治疗(PTT)相结合,不但解决了热动力治疗中的热源问题,同时可开展癌症协同治疗,从而进一步改善治疗效果。然而,常见的热分解型自由基引发剂在生理条件下不稳定且缺氧肿瘤富集效率较低。因此,构建安全高效的自由基引发剂及光热剂纳米递送系统已成为增强PTT/TDT临床联合应用的关键。然而,目前该类递送系统的构建多是以无机光热剂物理负载亲水性自由基引发剂(如AIPH)的形式,在体循环时存在引发剂的早释现象,对正常组织产生了一定的毒副作用。此外,尽管无机纳米光热剂具有诸多优势,但在长期安全性、质量评价等方面仍面临较多问题。因此,针对肿瘤缺氧的相关特性,开发一种能有效靶向缺氧肿瘤、可控产热且释放烷基自由基的安全高效光热-热动力协同治疗纳米制剂对缺氧肿瘤的治疗具有重要意义。
Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal and Thermodynamic Therapy
Di Gao, Ting Chen, Shuojia Chen, Xuechun Ren, Yulong Han, Yiwei Li, Ying Wang, Xiaoqing Guo, Hao Wang, Xing Chen, Ming Guo, Yu Shrike Zhang, Guosong Hong, Xingcai Zhang*, Zhongmin Tian*, Zhe Yang*
Nano-Micro Letters (2021)13: 99
https://doi.org/10.1007/s40820-021-00616-4
本文亮点
1. 本研究开发了一种全有机复合“纳米子弹”,通过非氧依赖型光热-热动力协同治疗对缺氧肿瘤进行“精确打击”,与传统ROS介导的肿瘤治疗相比具有突出的优势。
2. 通过在“纳米子弹”表面引入靶向CD44受体的透明质酸(HA)和靶向缺氧高表达碳酸酐酶IX(CA IX)的乙酰唑胺(AZ),实现“纳米子弹”对缺氧肿瘤的双重靶向效果。
3. “纳米子弹”可有效抑制CA IX在缺氧条件下的高表达,联合PTT/TDT共同抑制原发性乳腺肿瘤生长和肺转移。
内容简介
哈佛大学Xingcai Zhang,西安交通大学生命科学与技术学院杨哲团队等在前期研究的基础上设计制备了“纳米子弹”(ZPA@HA-ACVA-AZ NBs),通过光热-热动力协同治疗,实现对缺氧肿瘤的精确打击。首先,“纳米子弹”的壳层材料HA-ACVA-AZ中共价连接了经疏水碳链修饰的自由基引发剂ACVA-HDA,一方面通过改善自由基引发剂的负载方式,减少了其在体循环时的早释,提高生物安全性;另一方面赋予HA两亲性用于“纳米子弹”负载疏水光热剂。随后,HA壳层中的AZ的引入,有望通过CD44/CA IX的双靶向效应改善“纳米子弹”对CD44高表达的缺氧肿瘤细胞的靶向性。随后,通过纳米乳化法,在“纳米子弹”内核形成了具有较好光热稳定性及光热转换效果的特殊酞菁锌聚集体(ZnPc Aggregates, ZPA)。在808 nm激光辐照下,缺氧肿瘤组织中富集的“纳米子弹”可使组织快速升温,进而促使自由基引发剂释放高毒性烷基自由基,协同实现缺氧肿瘤的光热-热动力协同治疗。最后,利用AZ抑制CA IX在缺氧条件下的高表达,参与调节肿瘤细胞的转移和侵袭,联合PTT/TDT共同抑制原发性乳腺肿瘤生长和肺转移。
图文导读
II “纳米子弹”的细胞摄取及体外光热-热动力协同治疗效果验证为研究“纳米子弹”的细胞摄取能力,本实验制备了负载荧光染料香豆素6(C6)的“纳米子弹”,即C6@HA-ACVA-AZNBs,通过流式细胞分析和激光共聚焦显微图像,证明了缺氧肿瘤细胞对CD44/CA IX双靶向“纳米子弹”的摄取效率较CD44单靶向“纳米子弹”显著提高。此外,利用DCFH-DA作为胞内自由基探针,证明了808 nm激光照射下,经“纳米子弹”孵育后细胞内可有效产生自由基;采用MTT法验证了激光辐照后,该协同治疗“纳米子弹”可有效杀伤肿瘤细胞,且对于缺氧条件下培养的肿瘤细胞,双靶向“纳米子弹”较单靶向“纳米子弹”具有更加显著的细胞杀伤能力。
图5. “纳米子弹”的抑制乳腺癌肺转移能力评价。(a-b)划痕实验中伤口愈合图像和伤口闭合效率。(c-d)Transwell实验中转移细胞染色图像及迁移效率。(e)不同“纳米子弹”孵育及激光处理下4T1细胞的CA IX表达。(f-h)不同“纳米子弹”注射及激光处理下的4T1荷瘤小鼠的肺部图像(黑色箭头表示肿瘤转移灶)、转移灶和肺部H&E染色图像(T和L分别代表肿瘤和肺)。
作者简介
杨哲
本文通讯作者
西安交通大学 副教授▍主要研究领域主要从事生物材料、纳米医学、组织再生等方面的研究工作。
▍主要研究成果
在ACS Nano, Biomaterials, Theranostics, Bioactive Materials等期刊发表论文30余篇,主持国家级、省部级项目10余项。▍Email: yangzhe@xjtu.edu.cn
▍个人主页
gr.xjtu.edu.cn/web/yangzhe/3田中民
本文通讯作者
西安交通大学 教授▍主要研究领域盐敏感高血压的差异蛋白质组学与代谢组学;肾性高血压代谢的建模与计算;盐敏感高血压的药物靶标筛选以及诊断试剂盒开发;生物质谱分析技术。
▍主要研究成果
教育部新世纪优秀人才支持计划,主持国家及省部级项目9项。▍Email: zmtian@mail.xjtu.edu.cn
▍个人主页
gr.xjtu.edu.cn/web/zmtianXingcai Zhang
本文通讯作者
麻省理工学院/哈佛大学 研究员▍主要研究领域主要从事天然、仿生等材料在生物医药、环境、能源等方面的研究。
▍主要研究成果
迄今为止已在知名学术期刊发表了约百篇论文,包括Nat. Rev. Mater., Proc. Natl. Acad. Sci. U. S. A., Matter, Nat. Commun., Nano Today, ACS Nano, Nano Lett., Prog. Mater. Sci., Adv. Mater., Adv. Funct. Mater., Adv. Energy Mater.等国际顶尖期刊。https://orcid.org/0000-0001-7114-1095https://bioengineeringcommunity.nature.com/users/xingcai-zhang▍Email: xingcai@mit.edu
▍个人主页
scholar.harvard.edu/xingcaizhang撰稿:原文作者
编辑:《纳微快报》编辑部
关于我们
扫描上方二维码关注我们
点击阅读原文在Springer免费获取全文