摘要
在地球上,我们大可不必担心这些来自于深空的高能粒子的危害,因为地球有一个全局磁场像雨伞一样阻挡着大部分高能粒子来保护着我们;而且足够厚的地球大气也能够进一步“分解”这些高能量大质量的粒子,产生辐射危害很小的次级粒子。然而火星的环境与地球不同,它既没有全局的磁场,也缺乏足够厚的大气保护,这给了高能粒子穿透到火星表面产生辐射危害的机会。
图一
(图片来源:https://www.businessinsider.com/10-designs-from-nasas-mars-habitat-challenge-2015-9?IR=T#n3st--the-team-was-inspired-by-simplicity-and-bit-by-bit-construction-to-create-three-basic-layers-for-a-one-room-habitat-8)
图二(Roestel and Guo et al. 2020)
图三(Roestel and Guo et al. 2020)
其中石英(绿色线条)、安山岩(桔红色)、砂岩(红色)、硫磺混凝土(棕色)四种土壤成分为“干燥”土壤,主要由硅、铁、氧等元素组成。用它们做辐射屏蔽在一米之内适得其反,反而会导致辐射剂量比没有屏蔽的时候更大。
其它三种土壤成分Arabia Terra(上层为干燥土壤,下层含水—混有10%的氢元素)、均匀混合10%的氢元素比重、均匀混合50%氢元素比重,由于都不同程度的参入了氢元素(水的主要构成元素),则为“含水”土壤。计算得到的辐射剂量随这些水含量高的火星土壤能有效的减小。这是因为宇宙射线在穿越火星的环境会产生大量的次级中子,它们由于不受磁场约束,和人体作用时引发的辐射效果尤为显著;而土壤中的氢元素能更有效的散射并捕获中子,所以含“水”量高的火星土壤能更有效的降低生物辐射剂量。
图四(Roestel and Guo et al. 2020)
原文链接:
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JE006246
参考文献及网址:
Hassler, D. M., Zeitlin, C., Wimmer‐Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M.‐H., Grinspoon, D., Bullock, M. A., Posner, A., Gómez‐Elvira, J., Vasavada, A., & Grotzinger, J. P. (2014). Mars's surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science, 343(6169), 1244797.
https://doi.org/10.1126/science.124479
Guo, J., Zeitlin, C., Wimmer‐Schweingruber, R. F., Rafkin, S., Hassler, D. M., Posner, A., Heber, B., Köhler, J., Ehresmann, B., Appel, J. K., Böhm, E., Böttcher, S., Burmeister, S., Brinza, D. E., Lohf, H., Martin, C., Kahanpää, H., & Reitz, G. (2015). Modeling the variations of dose rate measured by RAD during the First MSL Martian year: 2012–2014. The Astrophysical Journal, 810(1), 24.
https://doi.org/10.1088/0004-637X/810/1/24
Guo, J., Banjac, S., Röstel, L., Terasa, J. C., Herbst, K., Heber, B., & Wimmer‐Schweingruber, R. F. (2019). Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars. Journal of Space Weather and Space Climate, 9(A2), 19.
https://doi.org/10.1051/swsc/2018051
Rostel, L., Guo, J., Banjac, S., Wimmer‐Schweingruber, R. F., & Heber, B. ( 2020). Subsurface radiation environment of Mars and its implication for shielding protection of future habitats. Journal of Geophysical Research: Planets, 125, e2019JE006246.
https://doi.org/10.1029/2019JE006246
Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., Noschese, R., Restano, M., & Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Science, 361(6401), 490–493.
https://doi.org/10.1126/science.aar7268
· 往期推荐 ·