其他

震撼!《自然》发表一篇 "逆时间引用+反事实写作”的牛文, “量子之父”潘建伟穿越时空第一人之梦瞬间破灭

2018-01-07 作者| 刘实 蝌蚪士

特别声明


本平台推出文稿均出于非商业性的教育和科研目的,旨在传播学术研究信息、净化大学教育与科研生态环境。但声明该文仅代表原作者的个人观点并不意味着本公众号赞同其观点或证实其内容的真实性。如有异议或侵权,本平台将在第一时间处理。期望读者关注点赞《蝌蚪士》公益事业: 为苦逼科民发声、并贡献正义的智力;且为平民大众免费科普,使之走进科学、传承科学、壮大科学——人人都能成为真才实学的蝌蚪士 (主编| 赛德夫).


前日, 写的一篇关于国际顶奸杂志《自然》2018“开门红”论文的文章昨日在《蝌蚪士》以重磅快讯:《自然》2018首期开门红论文和评论实际证明刘实原始发现正确且更有远发表。


一些读者反映:笔者的这篇文章有些“绕”,简直把人搞“晕”了。


其实这正是笔者的“预谋”,因为对于《自然》热捧的这篇牛文的剖析,笔者是准备至少要打“三个战役”,最后形成一系列“超越《自然》”的雄文。


咋地?越说越玄乎,越读你还越不信了不是?


别急!今天就给你来点“邪乎”的,如果不让你感受《自然》其实就具有了超越时空的能力,而且还是脚踏实地实践着“反事实”伪科出版,那笔者就不是一个超一流的科学家和国际科学反腐的巨人!


2017年的岁末,《自然》把中国科学界的一个“大忽悠”捧上了“量子之父”的神位(参见笔者文章《《自然》热捧的潘建伟:到底是“量子之父”还是“科学巨骗”》),其实绝对不是一件好事。因为,。。。算了,现在不说!


而不明真相的一些中国“自信”媒体,还居然顺着《自然》打出的“量子光柱”爬了上去,“自豪”地宣称:中国又有了一位世界级顶尖科学家!他或许会成为穿越时空第一人!”


什么叫“痴人说梦”?这就是“痴人说梦”!


2018年一开年,《自然》杂志就以一篇 “逆时间引用” 、“反事实写作”的“科学新发现”论文外加一篇只有砖家才能写出的捧文把潘建伟欲成为穿越时空第一人的量子纠缠大变活人梦砸了个粉碎。


咋回事?国际顶尖杂志《自然》真的是这样一个恶毒的国际顶奸渣子?


是的!不信, 请看事实!


下面就是这篇被主流中文媒体报道为“衰老相关的重编程促进了癌症的发生”的《自然》“科学新发现”论文。



对应该论文的砖家写的捧文是(主流中文媒体翻译成)

“逃避衰老的癌细胞促进肿瘤生长”。


笔者按下这篇捧文的问题不说,专门关注一下《自然》是如何让一个 “逆时间引用” 、 “反事实写作”的论文通过灰常严格的评审和仔细的编辑而隆重发表出来的。


常见道:魔鬼就在细节里。而超一流科学家的洞察力往往就取决于对关键细节的超人敏感。


大家看好了!下面是《自然》关于这篇牛文的投稿、审理和出版时间记录:


为了保证这个在线版的电子记录是无误的,笔者还专门把打印纸张版的对应部分“拍照”存档:


看到了吧!这个牛文“登顶”《自然》的经历还可能是灰常“艰难痛苦”的,历史近4年时间啊!


一个现在看来“非常重要”的科学发现,竟然被一个号称极具科学洞察力的国际顶尖杂志拖了近4年才发表,这是一个什么问题?


更让人惊奇的还不是这个灰常“严格”的评审过程,而是一个灰常不严肃的出版奇观!


因为在重磅快讯:《自然》2018首期开门红论文和评论实际证明刘实原始发现正确且更有远笔者已经暗示这篇所谓的科学新发现忽略了笔者已有的发现。因此,笔者当然要看看这个实际上是证明了笔者的某些在先发现的发现到底引用了什么文章。


不看不知道,一看吓一跳。


笔者首先注意到开局的两篇引用论文是2014年的!



再往下看,还更有奇观!

这篇2014年2月16日投稿的论文,竟然引用了多篇2016年和2017年的论文!


为了便于大家看清细节,笔者把该牛文正文的所有参考文献抄袭于下,并将“逆时间引用”的文章套红标出(注明)


References

1.Muñoz-EspÃn, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496 (2014)【2014年7月出版】

2.Pérez-Mancera, P. A., Young, A. R. & Narita, M. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547-558 (2014) 【2014年7月17日出版】

3. Zon, L. I.Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453, 306-313 (2008)

4. Krizhanovsky, V. et al. Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb. Symp. Quant. Biol. 73, 513-522 (2008)

5. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602 (1997)

6. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660-665 (2005)

7. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724 (2005)

8. Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335-346 (2002)

9. Dörr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425 (2013)

10. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598-602 (2012)

11. Krizhanovsky, V. & Lowe, S. W. Stem cells: The promises and perils of p53. Nature 460, 1085-1086 (2009)

12. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599 (2000)

13. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716 (2003)

14. Chen, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45, 34-42 (2013)

15. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016)

16. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172-183 (2017)

17. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333-344 (2008)

18. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409-414 (2003)

19. Wang, Y. et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650-1653 (2010)

20. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008-3019 (1998)

21. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007)

22. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950-7955 (2011)

23. Zhao, Z. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 24, 1389-1402 (2010)

24. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524-528 (2011)

25. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978-990 (2013)

26. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184-189 (2016)

27. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147.e16 (2017)

28. Pawlikowski, J. S. et al. Wnt signaling potentiates nevogenesis. Proc. Natl Acad. Sci. USA 110, 16009-16014 (2013)

29. Haugstetter, A. M. et al. Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br. J. Cancer 103, 505-509 (2010)


怎么样,笔者把《自然》这篇牛文说成是“逆时间引用”不算错吧?


那么,这篇牛文为什么还被笔者称为“反事实写作”呢?


其它的(暂时)不说,(现在)只说一点。


大家看看这篇牛文方法部分所引用的论文:



为了便于大家看全部和细节,笔者还是抄袭一下这些引文如下,并将其中最近出版的一篇引文套红:


30.Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533-538 (1985)

31.Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337 (2001)

32.Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323-1334 (2006)

33.Reimann, M. et al. Tumor stroma-derived TGF-β limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17, 262-272 (2010)

34.Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289-298 (2002)

35.remsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145-158 (2011)

36.Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670-2677 (1999)

37.Banchereau, J., de Paoli, P., Vallé, A., Garcia, E. & Rousset, F. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251, 70-72 (1991)

38.Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med. 6, 1029-1035 (2000)

39.Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752-757 (1997)

40.Jing, H. et al. Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev. 25, 2137-2146 (2011)

41.Yang, D. H. et al. Wnt5a is required for endothelial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/β-catenin and protein kinase Cα. Circ. Res. 104, 372-379 (2009)

42.Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289-1295 (2005)

43.Godar, S. et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62-73 (2008)

44.Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363-9367 (1995)

45.Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996-3004 (2007)

46.Greve, B., Kelsch, R., Spaniol, K., Eich, H. T. & Götte, M. Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81A, 284-293 (2012)

47.Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645-659 (2009)

48.Lu, D. et al. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc. Natl Acad. Sci. USA 108, 13253-13257 (2011)

49.Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313-324 (2010)

50.Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545-15550 (2005)

51.Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protocols 2, 1896-1906 (2007)

52.Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protocols 4, 484-494 (2009)

53.Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372 (2008)

54.Lee, T. I., Johnstone, S. E. & Young, R. A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protocols 1, 729-748 (2006)

55.Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70-78 (2009)

56.Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601-604 (2002)

57.Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118 (2010)

58.Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977-2000 (2002)

59.Hu, Z. et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006)

60.Chambers, S. M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578-591 (2007)


看清楚了吗?


这篇牛文的研究实际上是基于2012年之前的认识设计的,因此,在2014年2月投稿的论文居然引用了2014年7月以后发表的多篇论文为依据,这不是“反事实写作”是什么?


哈哈!一些国人还以为被《自然》捧为“量子之父”的潘建伟或许会成为穿越时空第一人。但《自然》却已经用铁的事实告诉国人:穿越时空的奇事已被德国人干了!而且还是在《自然》的“领地”干的!


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存