其他

魔法药水让细胞“返老还童”! 你信: 这是首次解码细胞命运, 那6年前的解码也是首次吗?

2018-04-08 蝌蚪士

1

中国科学家世界首次发现细胞命运密码

并解码新技术

来源:中国科技大学



4月4日,裴端卿课题组的科研团队在中科院广州生物医药与健康研究院合影,从左到右分别是:李东伟、刘晶、裴端卿、曹尚涛、余胜勇。


成熟的体细胞只要经过两种“药水”的“洗澡”,就能“返老还童”,回到具有多种分化能力的干细胞状态。中国科学家在世界上率先找到了神奇的配方。相关成果今天凌晨零时在线发表在国际干细胞权威杂志《细胞·干细胞》(Cell Stem Cell)上。



诱导多能干细胞可以帮助人类了解细胞“变身”的奥秘,为科学界提供了一个窥探生命本质的窗口。多能干细胞还可以用于再生新的组织和器官,为疾病治疗和再生医学提供“种子”细胞来源。


科研人员正在讨论课题进展


日本科学家、2012年诺贝尔生理或医学奖获得者山中伸弥提出了利用病毒载体进行基因运送,但这一方法具有潜在的致癌隐患,临床应用风险较大。此后,各国科学家不断地开辟新方法,均存在步骤多、时间长、效率低、机理不清楚等缺点。


中国科学院广州生物医药与健康研究院裴端卿研究员领衔的研究团队经过五年攻关,开发出一套高效、简单的化学小分子诱导多能干细胞的方法, 简称为CIP(Chemical Induction of Pluripotency),即化合物诱导干细胞多能性。


该方案只需要给细胞用两种不同的“药水”依次“洗澡”,便可以将体细胞“返老还童”到干细胞的状态。这一方法比之前的方案简单、高效,所需的初始细胞量少。更重要的是,可以实现多种体细胞类型“返老还童”,包括在体外极难培养的肝细胞。


这些神奇的“魔法药水是如何将成体细胞诱导到胚胎发育早期的多能干细胞状态的呢?裴端卿说,在个体中,所有的细胞都拥有同样的染色质。为什么会形成形态各异、功能不同的各种细胞呢?原来,细胞在发生可识别的形态变化之前,就受约束而向特定方向分化,确定了其未来的发育命运。团队研究发现,这一“调控之手”就是细胞核内部的“信息中枢”染色质的状态。细胞染色质的开放(1)与关闭(0)状态总和,构成了决定细胞命运状态,这就犹如计算机二进制的“密码串”,将细胞“锁”在了特定状态。


裴端卿介绍,由于没有引入外源基因,该方法操作简便、诱导过程条件均匀、所有成分明确、标准化,将为干细胞应用提供安全、高效的制备方法,具有广阔市场应用前景。与此同时,为开辟药物诱导细胞命运转变提供了新方向,将极大推动干细胞及再生医学的发展,服务于我国的医疗与卫生事业。


裴端卿课题组

Nature子刊iPSC研究新发现

来源:生物通


来自中科院广州生物医药与健康研究院的裴端卿课题组近日在新研究中发现H3K9甲基化是体细胞重编程为iPSCs的一个重要障碍。相关论文“H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs”发表在12月2日的《自然遗传学》(Nature Genetics)杂志上。


2006年日本京都大学的山中伸弥博士将4种基因转入小鼠的皮肤纤维细胞,诱导其转化为具有胚胎干细胞样特性的诱导多能干细胞(iPS),为世界上干细胞及再生医学研究开启了新的篇章。利用体细胞重编程获得多能干细胞的方法避免了胚胎干细胞研究存在的伦理争议,为开展干细胞对遗传性疾病的治疗研究提供了一个独特的平台。

尽管近年来iPS技术不断取得发展,各种改良技术时有出现。然而重编程效率低下一直都是科学家们头疼的问题。成为了iPS临床转化的重要障碍之一。解析体细胞重编程过程中的分子调控机制,开发出高效安全的iPS技术成为了近年来干细胞领域研究人员的热点。
 
转录因子介导体细胞重编程为多能干细胞(iPSCs)从本质上讲就是一种改写细胞命运的表观遗传学过程。为了获得对重编程机制的了解,裴端卿课题组研究人员将焦点放在了能够影响iPSC生成的表观遗传学因子上。


在这篇文章中,研究人员证实组蛋白H3 赖氨酸9(Histone H3 lysine 9 ,H3K9)甲基化是决定前体iPSC(pre-iPSC)状态的一个重要的表观遗传决定因素,甲基移除可导致iPSCs完全重编程。研究人员生成了一组稳定的前体iPS细胞,它们显示多能特性,但不激活核心多能网络。利用这些前体iPS细胞,研究人员证实血清中的骨形态发生蛋白(BMPs)是阻滞重编程的一个关键信号分子,并证实H3K9甲基转移酶是BMPs的下游靶点。H3K9甲基转移酶与对应的脱甲基酶一起作用通过在核心多能位点调控H3K9甲基化,充当了前体iPS细胞命运的on/off开关。


新研究揭示了一个制约体细胞“变身”的分子障碍——表观遗传学因子H3K9,从而为开发出新的iPS技术提供了新的研究方向。


裴端卿教授课题组近年来在iPS研究领域成果颇丰,其率先开发出利用维生素C提供细胞重编程效率的新技术,并破解了相应的分子机制。研究成果两度当选为国际权威干细胞研究期刊《细胞干细胞》(Cell stem cell)的封面故事。不久前还在《自然实验手册》(Nature Protocols)发表论文提出人类尿液中的肾上皮细胞是诱导多能干细胞(iPSCs)的理想来源之一,并详细描述了这一实验技术方案。


生物通推荐原文摘要:

H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs

The induction of pluripotent stem cells (iPSCs) by defined factors is poorly understood stepwise. Here, we show that histone H3 lysine 9 (H3K9) methylation is the primary epigenetic determinant for the intermediate pre-iPSC state, and its removal leads to fully reprogrammed iPSCs. We generated a panel of stable pre-iPSCs that exhibit pluripotent properties but do not activate the core pluripotency network, although they remain sensitive to vitamin C for conversion into iPSCs. Bone morphogenetic proteins (BMPs) were subsequently identified in serum as critical signaling molecules in arresting reprogramming at the pre-iPSC state. Mechanistically, we identified H3K9 methyltransferases as downstream targets of BMPs and showed that they function with their corresponding demethylases as the on/off switch for the pre-iPSC fate by regulating H3K9 methylation status at the core pluripotency loci. Our results not only establish pre-iPSCs as an epigenetically stable signpost along the reprogramming road map, but they also provide mechanistic insights into the epigenetic reprogramming of cell fate.


作者简介:

裴端卿

中国科学院广州生物医药与健康研究院院长、华南干细胞与再生医学研究所所长、研究员、博士生导师,国家"973计划"、"863计划"生物医药领域专家,国家中长期科技发展纲要"发育与生殖"重大研究计划专家,国家基金委杰出青年、长江学者、中科院百人计划、“新世纪百千万人才工程”国家级人选。


主要从事干细胞全能性调控机理方面的研究。在多能性转录因子Oct4、Nanog和Sox2的结构与功能研究中取得了国际公认的成果,并发现了调控干细胞多能性的负反馈调控机制,成功地解释了胚胎干细胞中多能性核心因子受到严格调控的表型。在国内率先建立了体细胞重编程(iPS)技术平台,并在国际上首次实现猪的体细胞重编程,并利用维生素C极大的提高了诱导多能干细胞(iPSC)转化效率,为我国在该领域的发展起到了引领作用。目前已在Nature、Cancer cell、 Cell stem cell、PLoS Biology、 Proc. Natl. Acad. Sci.、Cancer Res、FASEB J、J of Biol. Chem. 等国际著名学术刊物上发表42篇论文。从1991年至2009年,共发表SCI收录的论文70余篇,被SCI引用2000多次,单篇最高引用360次。担任Journal of Biological Chemistry编委,Cell Research副主编,Archives of Biochemistry and Biophysics编委,Biochemical Journal顾问编委,以及Proceedings of National Academy of Sciences(PNAS)、Cancer Research、Biochimica et biophysica acta、FASEB Journal等学术刊物的审稿人,亚太干细胞网络执委,广州干细胞与再生医学技术联盟理事长。


当前位置: Cell » Research Journals » Cell Stem Cell » Cell Stem Cell:中科院广州生物院裴端卿课题组揭示细胞命运变化中染色质开关规律


3

Cell Stem Cell:

中科院广州生物院裴端卿课题组

揭示细胞命运变化中染色质开关规律

DOI:http://dx.doi.org/10.1016/j.stem.2017.10.012    作者:裴端卿


标签:中国科学院 广州生物医药与健康研究院 裴端卿 细胞命运变化 染色质 开关规律

摘要 : 2017年12月8日,国际权威学术杂志《Cell》旗下干细胞领域权威期刊《Cell Stem Cell》杂志在线发表了中国科学院广州生物医药与健康研究院裴端卿课题组、陈捷凯课题组的一篇研究论文


研究通过对干细胞命运诱导过程的研究,发现细胞命运转换也遵循一个二进制规律。相关成果题为Chromatin Accessibility Dynamics During Reprogramming of iPSCs。

信息时代是计算机语言的二进制码(0-1)驱动的,0与1二进制演绎出丰富多彩的虚拟世界,包括热门的人工智能AI。那么,生命科学是否也存在类似的0-1二进制规律的密码?科学家通过对染色质的开放与关闭的研究,发现在体细胞诱导为干细胞时,染色质与细胞变化有关的位置存在一个“开-关”的基本调控逻辑。在此逻辑体系下,科学家阐述了干细胞诱导过程的变化机制。


DNA含有生物个体的所有遗传信息,但这些信息如何被阅读出来,是生命科学面临基本科学问题之一。细胞处于某一特定状态时,它会选择性阅读与该细胞相关的所有信息,同时要屏蔽其它不需要的信息。将体细胞诱导为多能干细胞(俗称的“细胞水平返老还童”)是探索这种机理的理想体系。成纤维细胞在导入诱导因子后,会启动一套奇妙的未知程序,将体细胞返老还童到受精后约3-5天的状态。过去10年来,全世界的科学家都在研究这一奇妙的过程,得到的成果极大地丰富了人类对细胞命运调控的认识。但目前对这一过程的了解主要以观察变化的现象为主,并没有从中抽象出具有普遍性逻辑或者规律。在该研究中,科研人员采用ATAC-seq技术读取染色质“开”与“关”的状态。通过测定体细胞向多能干细胞转变过程中每个染色质位点的开放程度,定义出全基因组每个位点由关到开(close to open)和开到关(open to close)的全息动态过程,这些数据证实了一个相对简单、普遍性的CO/OC逻辑体系。


研究发现,在转变过程中,早期成纤维细胞的很多特异性开放位点会被迅速关闭(OC),而到重编程后期很多多能性相关的位点则会被打开(CO)。科研团队认为开关的事件是直接与转录因子活性相关,因此对CO/OC位点的基序(motif)进行深入分析。分析发现,CO位点显著的富集出了重编程因子OCT、SOX、KLF的基序(motif),这与使用的重编程因子Oct4/Sox2/Klf4是吻合的,但CO的过程是非常缓慢的。在更加快速的OC过程中,在OC位点上特异富集出了很强的成纤维细胞特异性的转录因子,例如AP-1,ETS,TEAD,RUNX等家族成员,而没有OCT等重编程因子,证明体细胞相关染色质关闭(OC)过程是OCT、SOX、KLF非依赖的过程。进一步研究发现,与染色质关闭(OC)过程相关的因子都是体细胞重编程的重要障碍。那么,关闭这些位点的OC过程优势如何在操作呢?通过进一步筛选,研究发现,表观修饰基因Sap30在体细胞重编程早期被重编程因子激活,并通过促进成纤维细胞关键基因启动子区去乙酰化修饰,而使其启动子区逐渐关闭,最终沉默成纤维细胞关键调控基因,推动重编程进程。这部分研究结果首次揭示体细胞重编程过程中染色质结构动态变化的规律—CO/OC逻辑,并为理解体细胞重编和其他相关细胞命运转变提供了新的可参考的理论模型。


该基本规律是在体细胞重编程过程中发现,其概念应用价值可能包含人体的发育过程,也包括一些病理过程,例如癌变过程多数伴随着胚胎样基因的非正常表达,从而使癌变细胞“忘记”自己的位置与功能。如果能发掘出正常细胞在向癌细胞转变早期的染色质变化特征,癌症也许可以得到及时的诊断和防治。而在发育层面上,阐明不同功能细胞发育过程的CO/OC逻辑,将极大地推进干细胞领域的发展,有助于在体外获得具备修复衰老损伤器官组织的功能细胞,实现更广泛的组织再生和器官再造。



体细胞重编程中染色质CO/OC二元变化规律和OSK通过激活二次响应因子Sap30,来抑制体细胞关键转录因子的模型


原文链接:

Chromatin Accessibility Dynamics during iPSC Reprogramming

原文摘要:

Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.


4

《细胞·干细胞》:

裴端卿课题组破译细胞"返老还童"二维码



生命科学中是否存在类似支付二维码一样的二进制规律密码?中国科学院广州生物医药与健康研究院裴端卿课题组通过研究干细胞诱导过程,发现细胞在发生“返老还童”时,染色质的“开—关”状态恰似二维码一样记录了这个过程的大量信息。通过破译这些“二维码”的内在含义,他们阐述了干细胞诱导过程的变化机制。该研究成果于近日发表在《细胞·干细胞》上。


成纤维细胞在导入诱导因子后,会启动一套奇妙的未知程序,将体细胞返老还童到受精后约3.5天的状态。这种将体细胞诱导为多能干细胞是探索细胞命运转变机理的理想体系。过去10年来,全世界的科学家都在研究此奇妙过程,但在深层机制研究中并没有抽象出具有普遍性逻辑或者规律。


“形象地说,DNA就像一本百科全书,每个细胞都携带着能形成个体的所有信息,但在某个特定阶段,只能翻开这本书里面的一部分。我们的工作就是记录从体细胞到多能干细胞过程中,打开这本书的方式,以及研究是什么‘手’在翻书。”论文第一作者李东伟博士说。他们通过使用ATAC-seq技术去读取染色质“开—关”状态的“二维码”,发现在多能性获得和细胞命运转变过程中染色质结构具备由从开放到关闭(OC)和关闭到开放(CO)间的二元变化规律,且“二维码”在整个干细胞诱导过程中一直在变化。


裴端卿介绍,研究团队通过检测细胞命运转变过程中染色质开关的动态变化模式,发现细胞“返老还童“过程伴随着大规模染色质结构重排,首先会关闭体细胞特异性位点,同时逐渐打开多能性相关位点;在染色质结构重排的进程中,发现Sap30作为一个重编程过程被激活的重要因子,会通过促进去乙酰化修饰来抑制体细胞关键转录因子,进而促进细胞命运向多能性方向转变。这部分研究结果首次揭示了体细胞重编程过程中染色质结构动态变化的规律,并为理解体细胞重编和其他相关细胞命运转变提供了新的参考理论模型。


中国科学家

发明“魔法药水”:

可让细胞“返老还童”

来源:新华网


标题:“魔法药水”让细胞“返老还童” 中国科学家发现干细胞制备新方案


新华社北京4月6日电题:“魔法药水”让细胞“返老还童” 中国科学家发现干细胞制备新方案


新华社记者董瑞丰、刘宏宇


“返老还童”正在实验室里成为现实。生物学家开发了一套“魔法药水”,依次为细胞“洗澡”,便可又快又好地实现多种体细胞类型的“返老还童”。


中国科学院广州生物医药与健康研究院研究员裴端卿领衔的研究团队经过5年攻关,揭示了化学方法制备干细胞的科学原理,为诱导多能干细胞的研究和优化制备途径提供了全新的科学视角和解决方案。相关成果于北京时间4月6日在线发表于国际干细胞权威杂志《细胞·干细胞》。


“解锁”细胞命运的“密码串”


裴端卿团队开发出的这套化学小分子诱导多能干细胞的方法,只需给细胞用两种不同的“药水”依次“洗澡”,便可以将体细胞“返老还童”到多能干细胞的状态。


多能干细胞是一类具有自我更新、自我复制能力的细胞,具有再生各种组织器官的潜在功能。


这些神奇的“魔法药水”如何将成体细胞诱导到胚胎发育早期的多能干细胞状态?研究发现,细胞的命运受细胞核内部的“信息中枢”染色质的状态控制,细胞染色质的开放(1)与关闭(0)状态总和,构成了决定细胞命运状态。这种情况犹如计算机二进制的“密码串”,可以将细胞“锁”在特定状态。


科研团队进一步研究发现,在成体细胞的开放染色质位点周围,由AP-1及ETS等转录因子家族成员看守着,而在干细胞中,则由OCT、SOX 和KLF 等转录因子家族成员看守。细胞的“返老还童”,也就是由成体细胞看守的染色质由开放到关闭,而干细胞看守的染色质则由关闭到开放的更替过程。


裴端卿说,这项研究正是采用药物来精细调节细胞染色质的“密码串”,先采用一组药物将体细胞命运状态“解锁”,再采用另一组药物将细胞命运驱动到多能干细胞状态,进而实现了细胞命运的“返老还童”。


突破诺奖得主的原有方法


让细胞“返老还童”的方法不止一个,裴端卿团队的新方法更为简单、高效。


2012年诺贝尔生理学或医学奖得主山中伸弥是诱导多功能干细胞的创始人之一。


2007年,他所在的研究团队通过对小鼠的实验,发现诱导人体表皮细胞使其具有胚胎干细胞活动特征的方法。


这一方法诱导出的干细胞可转变为心脏和神经细胞,为研究治疗多种心血管绝症提供了巨大助力。该方法免除了使用人体胚胎提取干细胞的伦理道德制约,因此在全世界被广泛应用,业界称之为“山中伸弥方法”。


但在山中伸弥的研究方法中,利用病毒载体进行逆转录,容易致癌,对于以后的临床应用有较大风险。为了将体细胞诱导为多能干细胞,各国科学家不断地开辟新方法。后期,科学家们利用化学小分子替代山中伸弥因子诱导出了多能干细胞,但存在步骤多、时间长、效率低、机理不清楚等缺点。


论文通讯作者之一、中科院广州生物院研究员刘晶说,相比而言,中国科学家的新方法简单、高效、所需的初始细胞量少,而且容易标准化,被广泛应用。此外,该方案可以实现多种体细胞类型“返老还童”,包括在体外极难培养的肝细胞。


有望极大推动再生医学的发展


干细胞与再生医学近年来方兴未艾,旨在通过干细胞移植、分化与组织再生,促进机体创伤修复、治理疾病,具有重大的临床应用价值,也是衡量一个国家生命科学与医学发展水平的重要指标。


裴端卿介绍,这次发现的新方案,由于没有引入外源基因,操作简便,诱导过程条件均匀、标准化,将提供安全、高效的制备干细胞方法,具有广阔应用市场。


与此同时,这一方法为开辟药物诱导细胞命运转变提供了新方向,将极大推动干细胞及再生医学的发展,服务于我国医疗与卫生事业。


科学家还进一步对单个小分子药物“解锁”细胞染色质密码的机制进行了解密,发现关键小分子Brdu可以直接作用DNA结构本身来调节染色质密码状态,从而推动细胞的“返老还童”。该发现为开发更加高效、简单地用于细胞“返老还童”的小分子提供了突破口。


中科院上海药物研究所研究员、国家新药筛选中心副主任谢欣表示,我国科学家在化合物诱导多能干细胞的领域互为补位,中国在该领域处于世界领先地位



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存