查看原文
其他

风力发电机上有避雷针?!谁能告诉我它藏哪了……

城明辰 科学大院 2022-07-13

近期,受强对流天气影响,南方大范围地区遭到暴雨、大风和雷电袭击。高高的建筑物非常容易遭受雷击,这是小学期间学到的常识。大家可能不禁要问,风电场的风力发电机那么高,那岂不是闪电眼中的“活靶子”?确实是这样。


那风力发电机上会装避雷针吗?它们是如何防雷击的呢?


可不要小瞧闪电

最大电压能达十亿伏特!


“我抓住了闪电!”


1752年5月,在雷鸣电闪的波士顿,本杰明·富兰克林(Benjamin Franklin)紧握系着风筝线的铁钥匙对儿子威廉大声喊到。富兰克林借用风筝成为了第一个触摸到闪电的人,但后来的物理学家却发现,风筝不可能受到雷击,否则富兰克林会被当场击毙,他只是幸运地摸到了风筝感应生成的环境电荷。事实上,目前认为,富兰克林的风筝实验很可能只是一个故事,并没有确凿的资料予以支撑


富兰克林的风筝闪电实验 

(图片来源: benjamin-franklin-history)


虽然富兰克林触摸到的很可能不是闪电(雷电),但闪电确实是自然界中的常客,全球范围内平均每天会发生8百万次闪电。其中,委内瑞拉的卡塔通博(Catatumbo)河口每年平均就有297天会出现闪电,可谓是“雷神”在地球上的第二故乡。


闪电不仅发生次数多,携带的电压也非常大,目前统计到的闪电中最大电压高达10亿伏特,相当于串联了10000只皮卡丘(单只皮卡丘的电压是10万伏特)。闪电发生频率高,强度大,风力发电机在雷雨天气将会面临什么,我们可想而知。


皮卡丘施放技能:十万伏特 (图片来源:https://pokemon.fandom.com/wiki/Thunderbolt)


又高又尖的风力发电机

堪比闪电眼中的“活靶子”


大气中各种带电粒子分布极其混乱,雷电往往呈现出蜿蜒曲折的姿态。当其距离地面一百多米时,它会逐渐受到地面环境的影响。风力发电机具有纤细高耸的身躯,叶尖高度甚至超过了200米,它们通常位于开阔的荒漠、草原、浅海、丘陵等区域,毫无疑问,它们很容易就成为闪电眼中的“活靶子”。


风力发电机旁边的闪电 

(图片来源:windpowerengineering)


随着雷云逼近、雨水降临,雷电会慢慢伸出魔爪,首当其冲的就是叶片。实际上,任何物体的表面都附着一定的静电电荷,我们在冬天深有体会,脱个毛衣都会伴有“噼啪”作响的小火花。


晴天时的叶片中只存在有少量电荷,而雷雨前则会在表面富集大量电荷。当雨水浸润叶片,被水膜包裹的叶片就变为了空腔状导体,在大气电场的扰动下,叶片内部的引下导线会感应出正电荷。为保持静电平衡,叶片壳体内层产生等电量的负电荷,这又使叶片外表面的水膜层感应出正电荷。随着叶片的旋转,存储着正电荷的水膜也随之移动。此时,一旦雷云激发出雷电,它就可以对临近的叶片进行精准打击。


高速摄像机拍摄到的风电叶片被雷击的瞬间 

(图片来源:weatherguardwind)


没有避雷针

怎么扛得住上亿伏特的雷击?


凡是高层建筑,都装有肉眼可见的避雷针,它的保护范围呈伞状,在建筑最高点能有效地避免裸露在大气中的设施遭受雷击。早在1754年,避雷针就已经在欧洲问世并开始应用,此后迅速扩展到全世界,成为了高层建筑的必需品


避雷针利用尖端放电的特性,能吸引附近的雷电流,通过引下导线将其导入大地。因此,避雷针的“避”雷实际上是“引”雷。当然,避雷针只是民间通俗的说法,“接闪器”这个名字更接近于它的作用原理。在专业领域,避雷针是最常见的一种接闪器。


风电叶片是捕获风能的关键部件,它气动外形的好坏直接影响发电量的大小,但我们却并未发现避雷针,叶片到底是如何防雷的呢?原来为了在不改变外形的前提下进行防雷保护,叶片并没有安装避雷针,而是采用了隐秘的保护措施,埋入了金属叶尖以及多组圆柱状接闪器。要说有多隐秘,接闪器的外部端面会与光滑的叶片表面平齐,甚至人眼距离叶片1米远都难以发现它们的存在。


叶尖的接闪器(圆形)

(图片来源:weatherguardlightning)


金属叶尖和接闪器并非是一种具有某种神奇原理的元件,与避雷针类似,它们只是一块具有良好的导电性的纯金属(铝、铜等),


风力发电机防雷有多难?

坏了可能都修不起


但安装了接闪器是否就能高枕无忧了呢?


发生在城市上空的闪电 (图片来源:中国气象科普公众号)


实际上,没有任何接闪器能保证100%成功地拦截雷电,叶片防雷则需要面临更多的挑战,接闪器的有效性还会受到各方面的影响。叶片遭受雷击的概率与风向有关,理论上来讲,迎风面更容易“遭雷劈”,但早期叶片的雷击统计数据显示,叶片背面往往被闪电击中。这是由于早期叶片的制造工艺导致的,叶片内部的引向导线靠近在背风面,在一定程度上限制了接闪器准确“引”雷的能力。此外,与静止的建筑物不同,风电机组在运行过程中,叶片会持续不断地旋转,这会对接闪的有效性造成显著影响。


而一旦雷电直接打在叶片上,则会产生多种破坏现象,轻则使叶片表面焦化,形成孔洞,重则使叶片膨胀炸裂等。在大多数情况下,雷击会在叶片表面留下肉眼难以发现的小孔洞,虽然没有直接危害,但日积月累仍旧会影响叶片的性能。即使是运维人员及时发现了雷击产生的黑斑,也并不会及时维修,因为叶片的维修任务实在过于昂贵。


被闪电击断的叶片(左),被焦化的叶片(右) 

(图片来源:weatherguardwind)


除了闪电直接击中风力机叶片产生破坏之外,雷电流产生的感应电流、接地体在雷击时产生瞬间高电位“反击”也都会使电器设备受损。风力发电机组狭小的机舱内装有发电机、变频器等电力设备,闪电是它们的致命威胁。雷电蕴含着的巨大能量,并且其破坏方式复杂多样。风电机组的防雷保护涉及多种雷击损伤方式,因此进行雷电分区,综合规划防雷保护措施,创建一个稳定的电磁兼容性环境十分有必要。


摸着石头过河,叶片防雷面临诸多挑战


叶片防雷在目前以及未来的风电叶片设计中至关重要,早期的叶片主要由欧美发达国家主导开发,这些地区的雷电活动并不频繁。而我国风电的装机区域涉及的地质地貌复杂多样,各区域雷暴活动差异大,国外成熟的产品在国内面临着水土不服的问题。随着机组高度和叶片长度的不断增加,叶片防雷迫在眉睫


技术攻克路上不乏难关,但科技始终是突破困局的坚实力量,风力发电产业正如潮气蓬勃的青年人,他正迈开矫健的步伐不断追逐着朝阳,而偶尔出现在路途旁的荆棘,则为风电的创新发展提供了更多的可能。


参考文献:

[1]Weather Guard Lightning Tech | We Protect Wind Turbines (weatherguardwind.com)

[2] Preparing turbines for lightning strikes

(windpowerengineering.com)

[3] Damage control: Effects of near-lightning strikes on turbine blades (windpowerengineering.com)

[4] Lightning Protection System for Wind Turbines: What You Should Know About it

[5] How are blade materials and manufacturing changing to keep up with larger turbines? (windpowerengineering.com)



本文由科普中国融合创作出品,城明辰制作,中国科学院计算机网络信息中心监制,“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。




版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!



文章首发于科学大院,仅代表作者观点,不代表科学大院立场。

推荐阅读

“山竹”过境,来聊聊风力发电这回事 >>

不为人知的秘密,风力发电机为什么.. >>

被冷落的“打蛋机”:达里厄风力机的一生>>

为什么风力发电机都是白色的?>>




科学大院是中科院官方科普微平台,由中科院科学传播局主办、中国科普博览团队运营,致力于最新科研成果的深度解读、社会热点事件的科学发声。


转载授权、合作、投稿事宜请联系cas@cnic.cn



大院er拍了拍你:不要忘记 

点亮这里的 赞 和 在看 噢~ 


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存