查看原文
其他

漫画:什么是ConcurrentHashMap?

玻璃猫 nanchen 2019-06-27

转载声明:本文转载自「程序员小灰」









————————————



























————————————







前两期我们讲解了HashMap的基本原理,以及高并发场景下存在的问题。没看过的小伙伴可以点击下面链接:


漫画:什么是HashMap?

漫画:高并发下的HashMap


如果实在懒得看也没有关系,我们来简单回顾一下HashMap的结构:




简单来说,HashMap是一个Entry对象的数组。数组中的每一个Entry元素,又是一个链表的头节点。


Hashmap不是线程安全的。在高并发环境下做插入操作,有可能出现下面的环形链表:


















Segment是什么呢?Segment本身就相当于一个HashMap对象。


同HashMap一样,Segment包含一个HashEntry数组,数组中的每一个HashEntry既是一个键值对,也是一个链表的头节点。


单一的Segment结构如下:




像这样的Segment对象,在ConcurrentHashMap集合中有多少个呢?有2的N次方个,共同保存在一个名为segments的数组当中。


因此整个ConcurrentHashMap的结构如下:





可以说,ConcurrentHashMap是一个二级哈希表。在一个总的哈希表下面,有若干个子哈希表。


这样的二级结构,和数据库的水平拆分有些相似。









Case1:不同Segment的并发写入





不同Segment的写入是可以并发执行的。



Case2:同一Segment的一写一读





同一Segment的写和读是可以并发执行的。



Case3:同一Segment的并发写入





Segment的写入是需要上锁的,因此对同一Segment的并发写入会被阻塞。



由此可见,ConcurrentHashMap当中每个Segment各自持有一把锁。在保证线程安全的同时降低了锁的粒度,让并发操作效率更高。







Get方法:


1.为输入的Key做Hash运算,得到hash值。


2.通过hash值,定位到对应的Segment对象


3.再次通过hash值,定位到Segment当中数组的具体位置。



Put方法:


1.为输入的Key做Hash运算,得到hash值。


2.通过hash值,定位到对应的Segment对象


3.获取可重入锁


4.再次通过hash值,定位到Segment当中数组的具体位置。


5.插入或覆盖HashEntry对象。


6.释放锁。







Size方法的目的是统计ConcurrentHashMap的总元素数量, 自然需要把各个Segment内部的元素数量汇总起来。


但是,如果在统计Segment元素数量的过程中,已统计过的Segment瞬间插入新的元素,这时候该怎么办呢?











ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:


1.遍历所有的Segment。


2.把Segment的元素数量累加起来。


3.把Segment的修改次数累加起来。


4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。


5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。


6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。


7.释放锁,统计结束。



官方源代码如下:


public int size() {
// Try a few times to get accurate count. On failure due to
  // continuous async changes in table, resort to locking.
  final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
   long sum; // sum of modCounts
   long last = 0L; // previous sum
   int retries = -1; // first iteration isn't retry
   try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
           }
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}


为什么这样设计呢?这种思想和乐观锁悲观锁的思想如出一辙。


为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。





几点说明:


1. 这里介绍的ConcurrentHashMap原理和代码,都是基于Java1.7的。在Java8中会有些许差别。


2.ConcurrentHashMap在对Key求Hash值的时候,为了实现Segment均匀分布,进行了两次Hash。有兴趣的朋友可以研究一下源代码。




—————END—————



我是南尘,只做比心的公众号,欢迎关注我。

推荐阅读:

给扔物线 HenCoder Plus 学员的一次分享文字版

漫画:讲讲 HashMap


欢迎关注南尘的公众号:nanchen
做不完的开源,写不完的矫情,只做比心的公众号,如果你喜欢,你可以选择分享给大家。如果你有好的文章,欢迎投稿,让我们一起来分享。
          长按上方二维码关注        做不完的开源,写不完的矫情        一起来看 nanchen 同学的成长笔记



    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存