可燃冰,未来能源之星还是灭世恶魔?
|科学| · |探索| · |好奇|
在遥远的中国南海,一团火焰在燃烧了两个月以后,被人们缓缓熄灭。它是蓝鲸2号海洋钻井平台的排气火炬,来自海底深处的天然气在水幕中化作火光,用这种方式重见天日。这些天然气来源于一种被一些人寄以厚望,但也被另一些人畏之如虎的物质,可燃冰。
寄以厚望,是因为可燃冰的储量极为丰富。据粗略估算,它所蕴含的天然气资源可达到已知常规天然气资源量的数十倍;如果按有机碳储量计算,大约是已知煤炭、石油、天然气有机碳总量的2倍。假如能够大规模商业化利用,将会成为未来的能源之星,保障世界的化石燃料安全。
在这样的时代背景下,如何看待人们对可燃冰复杂而又纠结的心态?这需要从了解什么是可燃冰,和它“劣迹斑斑”的历史说起。
01
可燃冰的两项神奇之处 | 因为可燃冰分解时会释放大量的水,能够带走大量热量,所以可以如左图一般用手托着燃烧;右图是可燃冰“囚笼”的示意图,无数个这样的小笼子彼此连接,就成为固体可燃冰。图源@ worldoceanreview.com
可燃冰成因示意图 | 微生物分解有机质残骸产生的甲烷也被称作“生物气”,它和深处天然气藏扩散出来的气体,是形成可燃冰的主要气源。这两种过程都会源源不断产生甲烷,其中微生物产生的生物甲烷更重要一些。制图@陈随/星球科学评论
加拿大班夫国家公园亚伯拉罕湖里的甲烷气泡 | 注意气泡的层叠现象。图源@VCG
凿冰点火很危险,请勿自行尝试 | 图源@gifbin.com
阿塞拜疆巴库地区的泥火山群景观 | 即将炸开的气泡里,充斥着可燃气体甲烷。图源@vcg
海底和冻土中的“水合物稳定带”示意图 | 红色曲线表示压力,蓝色曲线表示温度。当二者相交时,重叠的区域就是“水合物稳定带”。它们位于特定的深度,具有一定的范围,同时会随着温度和压力的变化而改变范围。图源@grida.no
宏观状态的可燃冰 | 大量甲烷在开放空间里与水结合,可以形成大块的可燃冰,图为在墨西哥湾海底800多米处,由甲烷气泡溢出形成“可燃冰丘”。大量贻贝生活在可燃冰附近,它们的食物是依赖甲烷生存的化能自养微生物。图源@USGS/美国地质调查局
海底“可燃冰丘”上采集到的厚层纯净可燃冰 | 由日本明治大学团队在日本海Joetsu盆地的可燃冰丘里采集,总厚度超过五米。图源@明治大学天然气水合物研究所
印度洋海底采集的可燃冰 | 2006年印度国家天然气水合物计划一期项目采集的可燃冰样品,可燃冰存在于海底泥沙地层的裂缝里。图源@USGS/美国地质调查局
总之,这是一种主要储存在“烂泥巴和稀沙子”里的有机碳能源,它的外观和分布位置具有特定的规律。
从极地冻土到高原冻土,再到深海底部的广大天地间,可燃冰被人们寄以厚望。以目前的认识来看,洁白大块的可燃冰储量可能最少,泥质沉积(烂泥巴)里的分散可燃冰储量可能最大,但不易开采。相对容易开发的,是储存在冻土带地下砂层和海底砂层(稀沙子)孔隙中的分散可燃冰[2,6]。
但是,硬币的另一面则隐藏着可燃冰令人生畏的本领。
02
可燃冰稳定带范围改变造成可燃冰分解的示意图 | 自从末次冰期结束以来,全球范围内发生大规模的冰盖消融、海水升温,使大量的古代可燃冰失稳分解。释放出来的甲烷气体规模巨大,可能加剧全球温度从冰河期进一步回升。图源@文献[10]
墨西哥海底一处甲烷泄露点的气泡和贻贝 | 深海贻贝常作为深海化能自养生态系统的一部分。图源@NOAA/美国国家海洋和大气管理局
(1)围剿甲烷的三道封锁线
海底的一些微生物构建起围剿甲烷的第一道封锁线。当可燃冰分解得缓慢而稳定时,特定微生物会利用甲烷作为生命活动的原料,像植物一样为更多的其他生物提供食物,在海底构建起冷泉(cold seep)生态系统——这是一种可以养活一群奇奇怪怪深海生物的化能自养生态系统[7,13]。
第二道封锁线是深处的海水本身。由于水合物稳定带也包括一定深度的底层海水,所以可燃冰释放出来的部分甲烷可以在海底重新“冻结”——这便是在全球海底许多地点都存在的海底可燃冰丘(丘,mound)。大块、洁白、质地纯粹的可燃冰,便来自这些环境。
海底甲烷释放和两种消耗机制的示意图 | 绝大部分从海底释放的甲烷会被微生物或海水溶解氧给氧化掉。图源@文献[14]
古近纪“古新世-始新世极热事件”示意图 | 该事件发生于距今0.55-0.56亿年前的古近纪早期,大气和海洋温度快速升高然后回落,其中可燃冰快速分解是可能的原因之一。图源@文献[21]
在中国试采可燃冰的南海神狐海域,人们发现距今11300-8000年前的海底泥沙有些“缺钙”——碳酸钙的含量明显偏低,这是海水酸化留下的线索之一。在排除了一些其他因素后,它被解释为末次冰期后的升温过程里,可燃冰发生快速分解引起的底层海水酸化[8]。
巴伦支海密集的海底麻坑 | 在巴伦支海的比约恩纳陆架槽边缘,海底有大量的麻坑,这种海底地貌的形成与可燃冰分解有关。图源@文献[9]
它们的深度可达10-40米,直径300-400米,更大坑洞的尺寸有600x1000m左右[9,22]。在坑洞周围,海底仍在释放甲烷气泡。密集的气泡在海水里连成一串,在仪器成像里可以看起来就像是千万根火炬。
一万多年前的末次冰期,巴伦支海地区曾经被厚厚的冰层覆盖,冰层下形成可燃冰稳定带。随着冰盖消融,海底一边升温一边缓慢抬升,可燃冰稳定带的范围发生大幅度变化,原先的可燃冰失稳、分解、释放,大量气体聚集成海底的鼓包(pingo)。
鼓包内的气体可能有两种释放途径,要么缓缓释放、海底陷落成坑;要么喷薄而出、海底炸出大坑,变成海底的“密集痘疤”。类似的地貌在全球海洋里广泛存在,中国南海同样有许多类似大坑,例如西沙群岛西南部海域800-1200米深的海底分布有密集的坑洞群,最大的坑直径有3千米左右,深度超过160米[23-24]。根据它们的外观,人们起了一个形象的名字:麻坑。
俄罗斯Yamal半岛2014年气爆坑爆发前后的航拍对比图 | 这种气爆坑的形成源于泥土里的高压气体爆发,可能与可燃冰分解有关,这个坑的直径约为25米。图源@文献[25]
俄罗斯Yamal半岛2017年某个气爆坑爆发的航拍对比图 | 这个坑形成于一处河道底部的冻土带,爆发以后坑内蓄水成湖。图源@文献[26]
有一种解释认为,这些气爆坑的形成,与冻土地下可燃冰的分解和气体爆发有关[27]。在2014年产生的气爆坑位置,地下60米处可能存在一层可燃冰。或许正是这些可燃冰分解产生了许多无处释放的甲烷气体,它们在冻土里横冲直撞、上涌聚集,最终炸成大坑。
高压天然气穿过近200米厚的海底泥沙 | 上图为人工地震剖面,下图是原理示意。高压气体从可燃冰稳定带下的高压游离气聚集带上涌,破坏、挖掘、穿过蕴含可燃冰的泥沙后,聚集在浅近海底,留下“管状结构”,管道直径约20米。图源@文献[29]
由可燃冰分解引发海底滑坡的示意图 | 当可燃冰稳定带底界因为种种原因上移时,会使海底的一层可燃冰分解,一方面释放气体进入海水,另一方面改变泥砂层的力学性质,引起大规模滑坡。图源@grida.no
Storegga海底滑坡及其形成的海啸 | Storegga滑坡的产生可能与可燃冰分解有关,这次滑坡引发了规模庞大的海啸,席卷多个国家。图源@文献[34]
03
人们首先开采的是北极圈内永久冻土带以下的可燃冰,这是2002年及2007年多国合作在加拿大西北部Mallik地区的试采项目,冻土厚度650米左右,含有可燃冰的砂层位于大约1000米深。首次试采海底泥沙中的可燃冰是2013年,位于日本爱知县附近海域,这里的水深约1000米,蕴含可燃冰的砂层位于海底以下300米[37-38]。
日本“地球号”海洋钻探船 | 该船是日本进行海洋钻井的主力科考船,参加过多次全球大洋钻探项目。日本两次钻探海底可燃冰,使用的都是这条科考船。图源@JAMSTEC/日本国立海洋科技开发机构
中国南海首次可燃冰试采的主要环境监测数据 | 来源@文献[47]
这当然是一个好消息,但无论是中国的第一次试采还是日本的两次试采,均未公开海底是否发生变形的数据[48]。在刚刚结束不久的中国第二次海底试采中,人们使用了“未观测到甲烷泄露,未发生地质灾害”这样的字眼,这符合第一次试采后的检测结果,但同时也没有提及是否存在地层变形等方面的情况。
中国南海首次可燃冰试采时的火炬 | 图源@文献[47]
位于加拿大麦肯齐三角洲的Mallik可燃冰试采现场 | 这里位于北极圈内,极度严寒,阳光穿透大气中的冰晶后呈现出光柱。图源@USGS/美国地质调查局
驱动全球海水大规模交换的温盐环流 | 图源@grida.no
虽然短期内肯定不会引起大规模生物灭绝,但势必会逐渐改变现有海洋生物的生存格局,从而进一步影响到海洋养殖业和捕捞业,并以这种方式影响人们的餐桌——海洋为人类提供了18%的蛋白质来源,它们不光是各种生猛海鲜,还有以海洋生物作为饲料的家畜家禽。一旦海洋的生态出现问题,人类社会将会发生不小的动荡。
夕阳下的渔船 | 可燃冰开采对海洋环境的潜在冲击,会通过复杂的食物链最终影响到每一个人。图源@VCG
策划撰稿 | 云舞空城
视觉设计 |陈随
地图设计 |巩向杰
图片编辑 | 谢禹涵
内容审校 | 张楠
封面来源 |图虫创意
[1] Demirbas A. Methane hydrates as potential energy resource: Part 1–Importance, resource and recovery facilities[J]. Energy Conversion and Management, 2010, 51(7): 1547-1561.
[2] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社, 2014.
[3] 郭依群等,南海北部神狐海域高饱和度天然气水合物分布特征,地学前缘,2017,1. 24(4)
[4] Wei, J., Fang, Y., Lu, H., Lu, H., Lu, J., Liang, J., & Yang, S. (2018). Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea. Marine and Petroleum Geology.
[5] 刘昌岭, 业渝光, 孟庆国, et al. 南海神狐海域天然气水合物样品的基本特征*[J]. 热带海洋学报, 2013, 31(5):1-5.
[6] Boswell R, Hancock S, Yamamoto K, et al. Natural Gas Hydrates: Status of Potential as an Energy Resource[M]//Future Energy. Elsevier, 2020: 111-131.
[7] 陈忠, 颜文, 陈木宏, et al. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4):394-400.
[8] 叶黎明, 初凤友, 葛倩, et al. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学:中国地质大学学报, 2013, 038(006):1299-1308.
[9] Andreassen, K. (2017). Massive blowout craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 356(6341), 948–953.
[10] Crémière A, Lepland A, Chand S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature communications, 2016, 7: 11509.
[11] 鲁晓兵, 张旭辉, 王淑云. 天然气水合物开采相关的安全性研究进展[J]. 中国科学(物理学 力学 天文学), 049(003):3-33.
[12] 魏合龙, 孙治雷, 王利波, et al. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 036(001):1-13.
[13] Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea[J]. Marine Geology, 2006, 231(1-4): 89-102.
[14] James R H, Bousquet P, Bussmann I, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review[J]. Limnology and oceanography, 2016, 61(S1): S283-S299.
[15] Beerling D J, Lomas M R, Gröcke D R. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events[J]. American Journal of Science, 2002, 302(1): 28-49.
[16] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395.
[17] Them T R, Gill B C, Caruthers A H, et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction[J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6596-6601.
[18] Leon‐Rodriguez, L., and G. R. Dickens (2010), Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 298( 3–4), 409– 420,
[19] Sluijs A, Brinkhuis H, Schouten S, et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary[J]. Nature, 2007, 450(7173): 1218-1221.
[20] Pagani, M., K. Caldeira, D. Archer, and J. C. Zachos (2006), Atmosphere: An ancient carbon mystery, Science, 314( 5805), 1556– 1557.
[21] Svensen, H. Bubbles from the deep. Nature 483, 413–415 (2012). https://doi.org/10.1038/483413a
[22] Solheim, A., (1993). Gas-related sea floor craters in the Barents Sea. Geo Marine Letters, 13(4), 235–243.
[23] 罗敏. 南海西沙西南海底麻坑区生物地球化学过程、麻坑活动性以及麻坑形成时间研究[D]. 中国科学院研究生院(广州地球化学研究所), 2015.
[24] Sun Q, Wu S, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156.
[25] Buldovicz S N, Khilimonyuk V Z, Bychkov A Y, et al. Cryovolcanism on the Earth: Origin of a spectacular crater in the Yamal peninsula (Russia)[J]. Scientific reports, 2018, 8(1): 1-6.
[26] Bogoyavlensky V I, Sizov O S, Mazharov A V, et al. Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula[J]. The Arctic: Ecology and Economy, 2019, 1(33): 88-105.
[27] Olenchenko V V, Sinitsky A I, Antonov E Y, et al. Results of geophysical surveys of the area of “Yamal crater”, the new geological structure[J]. Kriosfera Zemli, 2015, 19: 84-95.
[29] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation[J]. Nature communications, 2018, 9(1): 1-6.
[30] Brown H E, Holbrook W S, Hornbach M J, et al. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway[J]. Marine geology, 2006, 229(3-4): 179-186.
[31] Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide[J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244.
[32] Solheim A, Berg K, Forsberg C F, et al. The Storegga Slide complex: repetitive large scale sliding with similar cause and development[J]. Marine and Petroleum Geology, 2005, 22(1-2): 97-107.
[33] Bondevik S, Mangerud J, Dawson S, et al. Record‐breaking height for 8000‐year‐old tsunami in the North Atlantic[J]. Eos, Transactions American Geophysical Union, 2003, 84(31): 289-293.
[34] Weninger B, Schulting R, Bradtmöller M, et al. The catastrophic final flooding of Doggerland by the Storegga Slide tsunami[J]. Documenta Praehistorica, 2008, 35: 1-24.
[35] Makogon Y F, Omelchenko R Y. Commercial gas production from Messoyakha deposit in hydrate conditions[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 1-6.
[36] Collett T S, Ginsburg G D. Gas hydrates in the Messoyakha gas field of the West Siberian Basin-a re-examination of the geologic evidence[J]. International Journal of Offshore and Polar Engineering, 1998, 8(01).
[37] Konno Y, Fujii T, Sato A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production[J]. Energy & Fuels, 2017, 31(3): 2607-2616.
[38] Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC advances, 2019, 9(45): 25987-26013.
[39] 祝有海, 张永勤, 文怀军, et al. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009(11):240-249.
[40] 王平康, 祝有海, 卢振权, et al. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学:物理学力学天文学, 2019(3).
[41] 张旭辉, 鲁晓兵, 王淑云, et al. 天然气水合物快速加热分解导致地层破坏的实验[J]. 海洋地质与第四纪地质, 2011(01):161-168.
[42] 李栋梁, 王哲, 吴起, et al. 天然气水合物储层力学特性研究进展[J]. 新能源进展, 2019, 7(01):42-51.
[43] Konno Y, Fujii T, Sato A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production[J]. Energy & Fuels, 2017, 31(3): 2607-2616.
[44] 吴起, 卢静生, 李栋梁, et al. 降压开采过程中含水合物沉积物的力学特性研究[J]. 岩土力学, 039(012):4508-4516.
[45] Wang Y, Feng J C, Li X S, et al. Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system[J]. Applied energy, 2018, 226: 916-923.
[46] Chen L, Feng Y, Okajima J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 55-66.
[47] Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.
[48] Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393.
[49] Song B, Cheng Y, Yan C, et al. Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 197-211.
[50] 孙可明, 王婷婷, 翟诚, et al. 天然气水合物加热分解储层变形破坏规律研究[J]. 特种油气藏, 2017, 024(5):91-96.
[51] Bollmann M. World ocean review: living with the oceans[J]. 2010.
[52] Laffoley D, Baxter J M. Ocean Deoxygenation–Everyone’s Problem: Causes, Impacts, Consequences and Solutions[J]. 2018.
[53] IPCC, 2019: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. In press.
[54] Oschlies A, Brandt P, Stramma L, et al. Drivers and mechanisms of ocean deoxygenation[J]. Nature Geoscience, 2018, 11(7): 467-473.
[55] Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7641): 335-339.
[56] 孙翔. 考虑水合物分解影响的沉积物力学行为数值模拟研究[D]. 大连理工大学, 2017.
[57] Wan Y, Wu N, Hu G, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea[J]. Natural Gas Industry B, 2018, 5(6): 631-643.
[58] Yang X, Guo L, Zhou L, et al. Study of mechanism and theoretical model of seabed destruction caused by gas hydrate dissociation[J]. Marine Georesources & Geotechnology, 2019: 1-11.
[59] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates dissociation on seafloor slope stability[M]//Submarine mass movements and their consequences. Springer, Dordrecht, 2003: 103-111.