这可能是最好的RxJava 2.x 入门教程(二)
RxJava2.x的深入了解和和Rxjava1.x的对比
南尘2251的博客地址:
http://www.jianshu.com/p/b39afa92807e
为了满足大家的饥渴难耐,GitHub将同步更新代码,主要包含基本的代码封装,RxJava 2.x所有操作符应用场景介绍和实际应用场景,后期除了RxJava可能还会增添其他东西,总之,GitHub上的Demo专为大家倾心打造。传送门:https://github.com/nanchen2251/RxJava2Examples
一、前言
很快我们就迎来了第二期,上一期我们主要讲解了 RxJava 1.x 到 2.x 的变化概览,相信各位熟练掌握RxJava 1.x的老司机们随便看一下变化概览就可以上手RxJava 2.x了,但为了满足更广大的年轻一代司机(未来也是老司机),在本节中,我们将学习RxJava 2.x 强大的操作符章节。
【注】以下所有操作符标题都可直接点击进入官方doc查看。
二、正题
1、Create
create操作符应该是最常见的操作符了,主要用于产生一个Obserable被观察者对象,为了方便大家的认知,以后的教程中统一把被观察者Observable称为发射器(上游事件),观察者Observer称为接收器(下游事件)。
Observable.create(new ObservableOnSubscribe<Integer>() {
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
mRxOperatorsText.append("Observable emit 1" + "\n");
Log.e(TAG, "Observable emit 1" + "\n");
e.onNext(1);
mRxOperatorsText.append("Observable emit 2" + "\n");
Log.e(TAG, "Observable emit 2" + "\n");
e.onNext(2);
mRxOperatorsText.append("Observable emit 3" + "\n");
Log.e(TAG, "Observable emit 3" + "\n");
e.onNext(3);
e.onComplete();
mRxOperatorsText.append("Observable emit 4" + "\n");
Log.e(TAG, "Observable emit 4" + "\n" );
e.onNext(4);
}
}).subscribe(new Observer<Integer>() {
private int i;
private Disposable mDisposable;
public void onSubscribe(@NonNull Disposable d) {
mRxOperatorsText.append("onSubscribe : " + d.isDisposed() + "\n");
Log.e(TAG, "onSubscribe : " + d.isDisposed() + "\n" );
mDisposable = d;
}
public void onNext(@NonNull Integer integer) {
mRxOperatorsText.append("onNext : value : " + integer + "\n");
Log.e(TAG, "onNext : value : " + integer + "\n" );
i++; if (i == 2) { // 在RxJava 2.x 中,新增的Disposable可以做到切断的操作,让Observer观察者不再接收上游事件
mDisposable.dispose();
mRxOperatorsText.append("onNext : isDisposable : " + mDisposable.isDisposed() + "\n");
Log.e(TAG, "onNext : isDisposable : " + mDisposable.isDisposed() + "\n");
}
}
public void onError(@NonNull Throwable e) {
mRxOperatorsText.append("onError : value : " + e.getMessage() + "\n");
Log.e(TAG, "onError : value : " + e.getMessage() + "\n" );
}
public void onComplete() {
mRxOperatorsText.append("onComplete" + "\n");
Log.e(TAG, "onComplete" + "\n" );
}
});
输出:
需要注意的几点是:
1)在发射事件中,我们在发射了数值3之后,直接调用了e.onComlete(),虽然无法接收事件,但发送事件还是继续的。
2) 另外一个值得注意的点是,在RxJava 2.x中,可以看到发射事件方法相比1.x多了一个throws Excetion,意味着我们做一些特定操作再也不用try-catch了。
3) 并且2.x 中有一个Disposable概念,这个东西可以直接调用切断,可以看到,当它的isDisposed()返回为false的时候,接收器能正常接收事件,但当其为true的时候,接收器停止了接收。所以可以通过此参数动态控制接收事件了。
2、Map
Map基本算是RxJava中一个最简单的操作符了,熟悉RxJava 1.x的知道,它的作用是对发射时间发送的每一个事件应用一个函数,是的每一个事件都按照指定的函数去变化,而在2.x中它的作用几乎一致。
Observable.create(new ObservableOnSubscribe<Integer>() {
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).map(new Function<Integer, String>() {
public String apply(@NonNull Integer integer) throws Exception { return "This is result " + integer;
}
}).subscribe(new Consumer<String>() {
public void accept(@NonNull String s) throws Exception {
mRxOperatorsText.append("accept : " + s +"\n");
Log.e(TAG, "accept : " + s +"\n" );
}
});
输出:
是的,map基本作用就是将一个Observable通过某种函数关系,转换为另一Observable,上面例子中就是把我们的Integer数据变成了String类型。从Log日志显而易见。
3、Zip
zip专用于合并事件,该合并不是连接(连接操作符后面会说),而是两两配对,也就意味着,最终配对出的Observable发射事件数目只和少的那个相同。
Observable.zip(getStringObservable(), getIntegerObservable(), new BiFunction<String, Integer, String>() {
public String apply(@NonNull String s, @NonNull Integer integer) throws Exception {
return s + integer;
}
}).subscribe(new Consumer<String>() {
public void accept(@NonNull String s) throws Exception {
mRxOperatorsText.append("zip : accept : " + s + "\n");
Log.e(TAG, "zip : accept : " + s + "\n");
}
});
private Observable<String> getStringObservable() {
return Observable.create(new ObservableOnSubscribe<String>() {
public void subscribe(@NonNull ObservableEmitter<String> e) throws Exception { if (!e.isDisposed()) {
e.onNext("A");
mRxOperatorsText.append("String emit : A \n");
Log.e(TAG, "String emit : A \n");
e.onNext("B");
mRxOperatorsText.append("String emit : B \n");
Log.e(TAG, "String emit : B \n");
e.onNext("C");
mRxOperatorsText.append("String emit : C \n");
Log.e(TAG, "String emit : C \n");
}
}
});
}
private Observable<Integer> getIntegerObservable() {
return Observable.create(new ObservableOnSubscribe<Integer>() {
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
if (!e.isDisposed()) {
e.onNext(1);
mRxOperatorsText.append("Integer emit : 1 \n");
Log.e(TAG, "Integer emit : 1 \n");
e.onNext(2);
mRxOperatorsText.append("Integer emit : 2 \n");
Log.e(TAG, "Integer emit : 2 \n");
e.onNext(3);
mRxOperatorsText.append("Integer emit : 3 \n");
Log.e(TAG, "Integer emit : 3 \n");
e.onNext(4);
mRxOperatorsText.append("Integer emit : 4 \n");
Log.e(TAG, "Integer emit : 4 \n");
e.onNext(5);
mRxOperatorsText.append("Integer emit : 5 \n");
Log.e(TAG, "Integer emit : 5 \n");
}
}
});
}
输出:
需要注意的是:
1) zip 组合事件的过程就是分别从发射器A和发射器B各取出一个事件来组合,并且一个事件只能被使用一次,组合的顺序是严格按照事件发送的顺序来进行的,所以上面截图中,可以看到,1永远是和A 结合的,2永远是和B结合的。
2) 最终接收器收到的事件数量是和发送器发送事件最少的那个发送器的发送事件数目相同,所以如截图中,5很孤单,没有人愿意和它交往,孤独终老的单身狗。
4、Concat
对于单一的把两个发射器连接成一个发射器,虽然 zip 不能完成,但我们还是可以自力更生,官方提供的 concat 让我们的问题得到了完美解决。
Observable.concat(Observable.just(1,2,3), Observable.just(4,5,6))
.subscribe(new Consumer<Integer>() {
public void accept(@NonNull Integer integer) throws Exception {
mRxOperatorsText.append("concat : "+ integer + "\n");
Log.e(TAG, "concat : "+ integer + "\n" );
}
});
输出:
如图,可以看到。发射器B把自己的三个孩子送给了发射器A,让他们组合成了一个新的发射器,非常懂事的孩子,有条不紊的排序接收。
5、FlatMap
FlatMap 是一个很有趣的东西,我坚信你在实际开发中会经常用到。它可以把一个发射器Observable 通过某种方法转换为多个Observables,然后再把这些分散的Observables装进一个单一的发射器Observable。但有个需要注意的是,flatMap并不能保证事件的顺序,如果需要保证,需要用到我们下面要讲的ConcatMap。
Observable.create(new ObservableOnSubscribe<Integer>() {
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).flatMap(new Function<Integer, ObservableSource<String>>() {
public ObservableSource<String> apply(@NonNull Integer integer) throws Exception {
List<String> list = new ArrayList<>();
for (int i = 0; i < 3; i++) {
list.add("I am value " + integer);
}
int delayTime = (int) (1 + Math.random() * 10); return Observable.fromIterable(list).delay(delayTime, TimeUnit.MILLISECONDS);
}
}).subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<String>() {
public void accept(@NonNull String s) throws Exception {
Log.e(TAG, "flatMap : accept : " + s + "\n");
mRxOperatorsText.append("flatMap : accept : " + s + "\n");
}
});
输出:
一切都如我们预期中的有意思,为了区分concatMap(下一个会讲),我在代码中特意动了一点小手脚,我采用一个随机数,生成一个时间,然后通过delay(后面会讲)操作符,做一个小延时操作,而查看Log日志也确认验证了我们上面的说法,它是无序的。
6、concatMap
上面其实就说了,concatMap 与 FlatMap 的唯一区别就是 concatMap 保证了顺序,所以,我们就直接把 flatMap 替换为 concatMap 验证吧。
Observable.create(new ObservableOnSubscribe<Integer>() {
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).concatMap(new Function<Integer, ObservableSource<String>>() {
public ObservableSource<String> apply(@NonNull Integer integer) throws Exception {
List<String> list = new ArrayList<>(); for (int i = 0; i < 3; i++) {
list.add("I am value " + integer);
}
int delayTime = (int) (1 + Math.random() * 10); return Observable.fromIterable(list).delay(delayTime, TimeUnit.MILLISECONDS);
}
}).subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<String>() {
public void accept(@NonNull String s) throws Exception {
Log.e(TAG, "flatMap : accept : " + s + "\n");
mRxOperatorsText.append("flatMap : accept : " + s + "\n");
}
});
输出:
结果的确和我们预想的一样。
三、写在最后
好了,这一节就先介绍到这里,下一节我们将学习其它的一些操作符,在操作符讲完后再带大家进入实际情景,希望持续关注,代码传送门。
南尘2251 博客链接地址:
http://www.jianshu.com/p/b39afa92807e
终端研发部提倡: 没有做不到的,只有想不到的。
在这里获得的不仅仅是技术!