查看原文
其他

提升开发效率N倍的20+命令行神器!(附 demo)

码农唐磊 程序猿石头 2020-12-18

点击上方蓝色字体,关注我 ——

一个在阿里云打工的清华学渣!


图 by:石头@青海湖

关于作者:程序猿石头(ID: tangleithu),现任阿里巴巴技术专家,清华学渣,前大疆后端 Leader。以每篇文章都让人有收获为目的,欢迎关注,交流和指导!

背景

文章推送的封面图就是我自己在用的键盘⌨️实拍(不做推荐,适合自己的才是最好的

读者福利点这里送几本我们部门出的新书——《弹性计算:无处不在的算力》免费包邮到家,欢迎大家来抽奖,也帮忙 review 下抽奖的代码

本文主要来源于在之前公司的小组内部的一个小分享,整理成一篇文章po出来。题目叫 “Shell 助力开发效率提升”,更切题的应该是叫“命令行”提升开发效率,这里并没有讲到 Shell 编程,而是主要介绍 Linux 或者 Mac 下常用的一些基本工具命令来帮助处理一些日常事务。

通过本文的介绍,你应该对相关命令有一个初步的了解,知道比如用什么命令可以完成怎样的操作, 至于具体的参数,不需要刻意地背诵,等到需要用到的时候,再去 cmd --help 或者 man cmd,用得多了,常用的命令也就自然记住了。

本文首先介绍了 Linux/Mac 下一些常用的命令行工具,然后用具体的示例阐述了常用的命令用法,最后通过一两个案例来说明这些工具的强大之处:

  • 比如给定一个 nginx 日志文件,能够找出 HTTP 404 请求最多的 top 10 是什么? 比如能找到请求耗时最多的 top 10 是什么?
  • 再比如能够简单的得到每小时的"PV"是多少? 再比如拿到一篇文章, 能否简单统计一下这篇文章单次词频最高的10个词语是什么?
  • 需要批量改某个文件夹下的文件名,批量将文件夹下的图片压缩成固定大小的,等等。

Mac 环境

  • zsh
  • on-my-zsh
  • plugin
    • git
    • autojump
    • osx(man-preview/quick-look/pfd(print Finder director)/cdf(cd Finder))
  • 常用快捷键(bindkey)
  • 演示: 高亮/git/智能补全/跳转(j, d)...

这里给大家展示一个小 Demo,之前在视频号(程序猿石头,欢迎关注)中分享的一个小视频,演示了如何在目录之间快速跳转。

关于 Mac 程序猿提高效率的相关技巧,更多的可以参考以下三篇文章:

Shell 基础命令

  • which/whereis, 常用 whatis, man, --help

    ➜  .oh-my-zsh git:(master)$ whereis ls
    /bin/ls
    ➜  .oh-my-zsh git:(master)$ which ls
    ls: aliased to ls -G
  • 基本文件目录操作

    rm, mkdir, mv, cp, cd, ls, ln, file, stat, wc(-l/w/c), head, more, tail, cat...
  • 利器 管道: |

Shell 文本处理

这里就是通过案例讲了一下12个命令的大致用法和参数,可以通过点击右边的目录(我博客有目录,公众号上木有)直达你想要了解的命令。

find, grep, xargs, cut, paste, comm
join, sort, uniq, tr, sed, awk

find

  • 常用参数

    • 文件名 -name, 文件类型-type, 查找最大深度-maxdepth
    • 时间过滤(create/access/modify) -[cam]time
    • 执行动作 -exec
  • 示例

    find ./ -name "*.json"
    find . -maxdepth 7 -name "*.json" -type f
    find . -name "*.log.gz" -ctime +7 -size +1M -delete (atime/ctime/mtime)
    find . -name "*.scala" -atime -7 -exec du -h {} \;

grep

  • 常用参数

    • -v(invert-match),
    • -c(count),
    • -n(line-number),
    • -i(ignore-case),
    • -l, -L, -R(-r, --recursive), -e
  • 示例

    grep 'partner' ./*.scala -l
    grep -e 'World' -e 'first' -i -R ./  (-e: or)
  • 相关命令: grep -z / zgrep / zcat xx | grep

xargs

  • 常用参数

    • -n(每行列数),
    • -I(变量替换)
    • -d(分隔符), Mac 不支持,注意与GNU版本的区别
  • 示例

    find . -type f -name "*.jpg" | xargs -n1 -I {} du -sh {}

cut

  • 常用参数

    • -b(字节)
    • -c(字符)
    • -f(第几列),-d(分隔符),f 范围: n, n-, -m, n-m
  • 示例

    echo "helloworldhellp" | cut -c1-10
    cut -d, -f2-8 csu.db.export.csv

paste

  • 常用参数

    • -d 分隔符
    • -s 列转行
  • 示例

    ➜  Documents$ cat file1
    1 11
    2 22
    3 33
    4 44
    ➜  Documents$ cat file2
    one     1
    two     2
    three   3
    one1    4

    ➜  Documents$ paste -d, file1 file2
    1 11, one     1
    2 22, two     2
    3 33, three   3
    4 44, one1    4
    ➜  Documents$ paste -s -d: file1 file2
    a 11:b bb:3 33:4 44
    one     1:two     2:three   3:one1    4

join

类似sql中的 ...inner join ...on ..., -t 分隔符,默认为空格或tab

➜  Documents$ cat j1
1 11
2 22
3 33
4 44
5 55
➜  Documents$ cat j2
one     1   0
one     2   1
two     4   2
three   5   3
one1    5   4
➜  Documents$ join -1 1 -2 3 j1 j2
1 11 one 2
2 22 two 4
3 33 three 5
4 44 one1 5

comm

  • 常用参数

    • 用法 comm [-123i] file1 file2
    • 字典序列, 3列: 只在file1/file2/both
    • - 去掉某列,i 忽略大小写
  • 示例

    ➜  Documents$ seq 1 5 >file11
    ➜  Documents$ seq 2 6 >file22
    ➜  Documents$ cat file11
    1
    2
    3
    4
    5
    ➜  Documents$ cat file22
    2
    3
    4
    5
    6
    ➜  Documents$ comm file11 file22
    1
            2
            3
            4
            5
        6
    ➜  Documents$ comm -1 file11 file22
        2
        3
        4
        5
    6
    ➜  Documents$ comm -2 file11 file22
    1
        2
        3
        4
        5
    ➜  Documents$ comm -23 file11 file22
    1

相关命令 diff(类似git diff)

sort

  • 常用参数

    • -d, --dictionary-order
    • -n, --numeric-sort
    • -r, --reverse
    • -b, --ignore-leading-blanks
    • -k, --key
  • 示例

    ➜  Documents$ cat file2
    one     1
    two     2
    three   3
    one1    4
    ➜  Documents$ sort file2
    one     1
    one1    4
    three   3
    two     2
    ➜  Documents$ sort -b -k2 -r file2
    one1    4
    three   3
    two     2
    one     1

uniq

  • 常用参数

    • -c 重复次数
    • -d 重复的
    • -u 没重复的
    • -f 忽略前几列
  • 示例

    ➜  Documents$ cat file4
    11
    22
    33
    11
    11
    ➜  Documents$ sort file4 | uniq -c
       3 11
       1 22
       1 33
    ➜  Documents$ sort file4 | uniq -d
    11
    ➜  Documents$ sort file4 | uniq -u
    22
    33
    ➜  Documents$ cat file3
    one     1
    two     1
    three   3
    one1    4
    ➜  Documents$ uniq -c -f 1 file3
       2 one     1
       1 three   3
       1 one1    4

注意:uniq比较相邻的是否重复,一般与sort联用

tr

  • 常用参数

    • -c 补集
    • -d 删除
    • -s 压缩相邻重复的
  • 示例

    ➜  Documents$ echo '1111234444533hello' | tr  '[1-3]' '[a-c]'
    aaaabc44445cchello
    ➜  Documents$ echo '1111234444533hello' | tr -d '[1-3]'
    44445hello
    ➜  Documents$ echo '1111234444533hello' | tr -dc '[1-3]'
    11112333
    ➜  Documents$ echo '1111234444533hello' | tr -s '[0-9]'
    123453hello
    ➜  Documents$ echo 'helloworld' | tr '[:lower:]' '[:upper:]'
    HELLOWORLD

sed

  • 常用参数

    • -d 删除
    • -s 替换, g 全局
    • -e 多个命令叠加
    • -i 修改原文件(Mac下加参数 "",备份)
  • 示例

    ➜  Documents$ cat file2
    one     1
    two     2
    three   3
    one1    4
    ➜  Documents$ sed "2,3d" file2
    one     1
    one1    4
    ➜  Documents$ sed '/one/d' file2
    two     2
    three   3
    ➜  Documents$ sed 's/one/111/g' file2
    111     1
    two     2
    three   3
    1111    4
    #将one替换成111 并将含有two的行删除
    ➜  Documents$ sed -e 's/one/111/g' -e '/two/d' file2
    111     1
    three   3
    1111    4
    # ()标记(转义), \1 引用
    ➜  Documents$ sed 's/\([0-9]\)/\1.html/g' file2
    one     1.html
    two     2.html
    three   3.html
    one1.html    4.html
    # 与上面一样 & 标记匹配的字符
    ➜  Documents$ sed 's/[0-9]/&.html/g' file2
    one     1.html
    two     2.html
    three   3.html
    one1.html    4.html
    ➜  Documents$ cat mobile.csv
    "13090246026"
    "18020278026"
    "18520261021"
    "13110221022"
    ➜  Documents$ sed 's/\([0-9]\{3\}\)[0-9]\{4\}/\1xxxx/g' mobile.csv
    "130xxxx6026"
    "180xxxx8026"
    "185xxxx1021"
    "131xxxx1022"

awk

  • 基本参数和语法

    • NR 行号, NF 列数量
    • $1 第1列, $2, $3...
    • -F fs fs分隔符,字符串或正则
    • 语法: awk 'BEGIN{ commands } pattern{ commands } END{ commands }', 流程如下:
  1. 执行begin
  2. 对输入每一行执行 pattern{ commands }, pattern 可以是 正则/reg exp/, 关系运算等
  3. 处理完毕, 执行 end
  • 示例

    ➜  Documents$ cat file5
    11  11 aa cc
    22  22 bb
    33  33 d
    11  11
    11  11
    #行号, 列数量, 第3列
    ➜  Documents$ awk '{print NR"("NF"):", $3}' file5
    1(4): aa
    2(3): bb
    3(3): d
    4(2):
    5(2):
    #字符串分割, 打印1,2列
    ➜  Documents$ awk -F"xxxx" '{print $1, $2}' mobile.csv
    "130 6026"
    "180 8026"
    "185 1021"
    "131 1022"
    #添加表达式
    ➜  Documents$ awk '$1>=22 {print NR":", $3}' file5
    2: bb
    3: d
    #累加1到36,奇数,偶数
    ➜  Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
    question: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 = 666
    ➜  Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} $1 % 2 ==1 {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
    question: 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 = 324
    ➜  Documents$ seq 36 | awk 'BEGIN{sum=0; print "question:"} $1 % 2 !=1 {print $1" +"; sum+=$1} END{print "="; print sum}' | xargs | sed 's/+ =/=/'
    question: 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32 + 34 + 36 = 342
  • 其他高级语法:for, while 等, 各种函数等,本身awk是一个强大的语言,可以掌握一些基本的用法。

    实际应用

    日志统计分析

    例如拿到一个nginx日志文件,可以做很多事情,比如看哪些请求是耗时最久的进而进行优化,比如看每小时的"PV"数 等等。

    ➜  Documents$ head -n5 std.nginx.log
    106.38.187.225 - - [20/Feb/2017:03:31:01 +0800] www.tanglei.name "GET /baike/208344.html HTTP/1.0" 301 486 "-" "Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322) 360JK yunjiankong 975382" "106.38.187.225, 106.38.187.225" - 0.000
    106.38.187.225 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /baike/208344.html HTTP/1.0" 301 486 "-" "Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322) 360JK yunjiankong 975382" "106.38.187.225, 106.38.187.225" - 0.000
    10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] stdbaike.bdp.cc "POST /baike/wp-cron.php?doing_wp_cron=1487532662.2058920860290527343750 HTTP/1.1" 200 182 "-" "WordPress/4.5.6; http://www.tanglei.name/baike" "10.130.64.143" 0.205 0.205
    10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /external/api/login-status HTTP/1.0" 200 478 "-" "-" "10.130.64.143" 0.003 0.004
    10.130.64.143 - - [20/Feb/2017:03:31:02 +0800] www.tanglei.name "GET /content_util/authorcontents?count=5&offset=0&israndom=1&author=9 HTTP/1.0" 200 11972 "-" "-" "10.130.64.143" 0.013 0.013

    上面是nginx的一个案例, 例如希望找到top 10 请求的path:

    head -n 10000 std.nginx.log | awk '{print $8 ", " $10}' | grep ',404' | sort | uniq -c | sort -nr -k1 | head -n 10
    #or
    head -n 10000 std.nginx.log | awk '$10==404 {print $8}' |sort | uniq -c | sort -nr -k1 | head -n 10

    当然,你可能一次不会直接处理成功,一般会先少拿一部分数据进行处理看逻辑是否正常, 或者你可以缓存一些中间结果.

    cat std.nginx.log | awk '{print $8 "," $10}' | grep ',404' >404.log
    sort 404.log | uniq -c | sort -nr -k1 | head -n 10

    再比如每小时请求数量,请求耗时等等

    ➜  Documents$ head -n 100000 std.nginx.log | awk -F: '{print $1 $2}' | cut -f3 -d/ | uniq -c
    8237 201703
    15051 201704
    16083 201705
    18561 201706
    22723 201707
    19345 201708

    其他实际案例 ip block

    案例: db数据订正

    背景: 因为某服务bug,导致插入到db的图片路径不对,需要将形如(安全需要已经将敏感数据替换) https://www.tanglei.name/upload/photos/129630//internal-public/shangtongdai/2017-02-19-abcdefg-eb85-4c24-883e-hijklmn.jpg 替换成 http://www.tanglei.me/internal-public/shangtongdai/2017-02-19-abcdefg-eb85-4c24-883e-hijklmn.jpg,因为mysql等db貌似不支持直接正则的替换,所以不能够很方便的进行写sql进行替换(就算支持,直接改也有风险的,还是先备份再修改留个“后悔药”)。

    当然将数据导出,然后写 python 等脚本处理也是一种解决方案,但如果用上面的命令行处理,只需要几十秒即可完成。

    步骤:

    1. 准备数据

      select id, photo_url_1, photo_url_2, photo_url_3 from somedb.sometable where 
      photo_url_1 like 'https://www.tanglei.name/upload/photos/%//internal-public/%' or
      photo_url_2 like 'https://www.tanglei.name/upload/photos/%//internal-public/%' or
      photo_url_3 like 'https://www.tanglei.name/upload/photos/%//internal-public/%';
    2. 替换原文件 一般在用sed替换的时候,先测试一下是否正常替换。

      #测试是否OK
      head -n 5 customers.csv | sed 's|https://www.tanglei.name/upload/photos/[0-9]\{1,\}/|http://www.tanglei.me|g'
      # 直接替换原文件, 可以sed -i ".bak" 替换时保留原始备份文件
      sed -i "" 's|https://www.tanglei.name/upload/photos/[0-9]\{1,\}/|http://www.tanglei.me|g' customers.csv
    3. 拼接sql, 然后执行

      awk -F, '{print "update sometable set photo_url_1 = " $2, ", photo_url_2 = " $3, ", photo_url_3 = " $4, " where id = " $1 ";" }' customers.csv > customer.sql
      #然后执行sql 即可

    其他

    • play framework session

    • 老方式: 需要启play环境,慢。新方式直接命令行解决。

      sbt "project site" consoleQuick
      import play.api.libs._
      val sec = "secret...secret"
      var uid = "10086"
      Crypto.sign(s"uid=$uid", sec.getBytes("UTF-8")) + s"-uid=$uid"
      ➜  Documents$  ~/stdcookie.sh 97522
      918xxxxdf64abcfcxxxxc465xx7554dxxxx21e-uid=97522
      ➜  Documents$ cat ~/stdcookie.sh
      #!/bin/bash ##  cannot remove this line
      uid=$1
      hash=`echo -n "uid=$uid" | openssl dgst -sha1 -hmac "secret...secret"`
      echo "$hash-uid=$uid"

    • 统计文章单词频率: 下面案例统计了川普就职演讲原文中词频最高的10个词。

      ➜  Documents$ head -n3 chuanpu.txt
      Chief Justice Roberts, President Carter, President Clinton, President Bush, President Obama, fellow Americans and people of the world, thank you.

      We, the citizens of America, are now joined in a great national effort to rebuild our country and restore its promise for all of our people. Together we will determine the course of America and the world for many, many years to come.
      ➜  Documents$ cat chuanpu.txt | tr -dc 'a-zA-Z ' | xargs -n 1 | sort | uniq -c | sort -nr -k1 | head -n 20
        65 the
        63 and
        48 of
        46 our
        42 will
        37 to
        21 We
        20 is
        18 we
        17 America
        15 a
        14 all
        13 in
        13 for
        13 be
        13 are
        10 your
        10 not
        10 And
        10 American
    • 随机数:比如常常新注册一个网站,随机生成一个密码之类的。

      ➜  Documents$ cat /dev/urandom | LC_CTYPE=C tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 5
      cpBnvC0niwTybSSJhUUiZwIz6ykJxBvu
      VDP56NlHnugAt2yDySAB9HU2Nd0LlYCW
      0WEDzpjPop32T5STvR6K6SfZMyT6KvAI
      a9xBwBat7tJVaad279fOPdA9fEuDEqUd
      hTLrOiTH5FNP2nU3uflsjPUXJmfleI5c
      ➜  Documents$ cat /dev/urandom | head -c32 | base64
      WoCqUye9mSXI/WhHODHDjzLaSb09xrOtbrJagG7Kfqc=
    • 图片处理压缩,可批量改图片大小等等 sips

      ➜  linux-shell-more-effiency$ sips -g all which-whereis.png
      /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
        pixelWidth: 280
        pixelHeight: 81
        typeIdentifier: public.png
        format: png
        formatOptions: default
        dpiWidth: 72.000
        dpiHeight: 72.000
        samplesPerPixel: 4
        bitsPerSample: 8
        hasAlpha: yes
        space: RGB
        profile: DELL U2412M
      ➜  linux-shell-more-effiency$ sips -Z 250 which-whereis.png
      /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
        /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
      ➜  linux-shell-more-effiency$ sips -g all which-whereis.png
      /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
        pixelWidth: 250
        pixelHeight: 72
        typeIdentifier: public.png
        format: png
        formatOptions: default
        dpiWidth: 72.000
        dpiHeight: 72.000
        samplesPerPixel: 4
        bitsPerSample: 8
        hasAlpha: yes
        space: RGB
        profile: DELL U2412M
      ➜  linux-shell-more-effiency$ sips -z 100 30 which-whereis.png
      /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
        /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
      ➜  linux-shell-more-effiency$ sips -g pixelWidth -g pixelHeight which-whereis.png
      /Users/tanglei/Documents/linux-shell-more-effiency/which-whereis.png
        pixelWidth: 30
        pixelHeight: 100
    • 命令行处理 JSON 的神器:随着 JSON 通用性,常常需要处理 JSON 数据,这里推荐这个命令行 JSON 处理神器 jq is a lightweight and flexible command-line JSON processor[1]

    • 其他还有一个综合应用可参考:没想到 Shell 命令竟然还能这么玩?| Shell 玩转大数据分析 

    • 推荐以下参考材料:

    • [1] JSON processor: https://stedolan.github.io/jq/

      [2] Linux工具快速教程: http://linuxtools-rst.readthedocs.io/zh_CN/latest/index.html

      [3] Linux命令大全: http://man.linuxde.net/

      [4] Advanced Bash-Scripting Guide: http://tldp.org/LDP/abs/html/

      [5] UNIX环境高级编程: https://book.douban.com/subject/25900403

    福利送书

    送几本我们部门出的新书,免费包邮到家,欢迎大家来抽奖(两种抽奖方式,详情见下文),也帮忙review下抽奖的代码

    关于 AI 的数百个问题,清华男神刘云浩教授的 3 万字回复给整得明明白白|附抽奖送书

    上文是一个超级大牛关于AI的相关问题解答,抽奖活动在文末。直接公众号后台回复“抽奖” 也是其中一种抽奖方式哦。 

    后记

    觉得本号分享的文章有价值,记得添加星标哦。周更很累,不要白 piao,需要来点正反馈,安排个 “一键三连”(点赞、在看、分享)如何?😝 这将是我持续输出优质文章的最强动力。


    推 荐 阅 读

    快快加入我们——“阿里云-ECS/神龙计算平台” 招人啦
    面试官:会玩牌吧?给我讲讲洗牌算法和它的应用场景吧!

    面了 7 轮 Google,最终还是逃不脱被挂的命运

    从一道面试题谈谈一线大厂码农应该具备的基本能力



    程序猿石头 


    程序猿石头(ID: tangleithu),现任阿里巴巴技术专家,清华学渣,前大疆后端 Leader。用不同的视角分享高质量技术文章,以每篇文章都让人有收获为目的,欢迎关注,交流和指导!扫码回复关键字 “1024” 获取程序员大厂面试指南


      您可能也对以下帖子感兴趣

      文章有问题?点此查看未经处理的缓存