UART需要使用DMA发送吗?
DMA一种在嵌入式实时任务处理中常用的功能。
而UART发送数据包,使用DMA方式能大量减轻CPU处理的时间,使其CPU资源不被大量浪费,尤其在UART收发大量数据包(如高频率收发指令)时具有明显优势。
DMA:Direct Memory Access,直接内存存取/访问。简单来说就是内存RAM直接和其他设备(外设)进行数据交互,而不需要CPU参与的一种控制器。
DMA它允许不同速度的硬件装置来沟通,而不需要依赖于 CPU 的大量中断负载。否则,CPU 需要从来源把每一片段的数据复制到暂存器,然后把它们再次写回到新的地方。在这个时间中,CPU 对于其他的工作来说就无法使用。
DMA在系统中的角色好比一个公司的员工,CPU好比是公司的老板。
老板想要寄送一个快递到北京,只需要一个口令安排员工即可,具体填写快递单号、物流、派送等一系列工作老板不用关心。最后快递被对方收到,通知一声老板即可。
回到UART发送数据,同样的道理,CPU只需要简单的操作(类似上面的“安排”),就可把一串数据包丢给DMA直接发送,最后发送完成,收到一个发送完成中断,通知CPU发送完成即可。
说到这里相信大部分人都明白了,老板可以亲自开车或者坐飞机送快递,完成这件事情,但会耽搁老板很多时间。
同样,如果我们使用UART自己发送,CPU就会不停仲裁发送结果,占据CPU大量资源。
在RTOS中,特别是有大量任务需要处理的时候,UART使用DMA发送就会带来很大方便。使用裸机运行的相同,尤为突出。
本文使用STM32F4 MCU、标准外设库为例给大家简单讲述一下配置。
1.USART配置
USART(COM)宏定义:
/* COMM通信 */
#define COMM_COM USART2
#define COMM_COM_CLK RCC_APB1Periph_USART2
#define COMM_COM_TX_GPIO_CLK RCC_AHB1Periph_GPIOD //UART TX
#define COMM_COM_TX_PIN GPIO_Pin_5
#define COMM_COM_TX_GPIO_PORT GPIOD
#define COMM_COM_TX_SOURCE GPIO_PinSource5
#define COMM_COM_TX_AF GPIO_AF_USART2
#define COMM_COM_RX_GPIO_CLK RCC_AHB1Periph_GPIOD //UART RX
#define COMM_COM_RX_PIN GPIO_Pin_6
#define COMM_COM_RX_GPIO_PORT GPIOD
#define COMM_COM_RX_SOURCE GPIO_PinSource6
#define COMM_COM_RX_AF GPIO_AF_USART2
#define COMM_COM_IRQn USART2_IRQn
#define COMM_COM_Priority 9 //优先级
#define COMM_COM_BaudRate 115200 //波特率
#define COMM_COM_IRQHandler USART2_IRQHandler //中断函数接口(见stm32f4xx_it.c)
USART配置:
/************************************************
函数名称 : USART_COMM_Configuration
功 能 : 通信串口配置
参 数 : 无
返 回 值 : 无
作 者 : strongerHuang
*************************************************/
void USART_COMM_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
/* 时钟配置 */
RCC_AHB1PeriphClockCmd(COMM_COM_TX_GPIO_CLK | COMM_COM_RX_GPIO_CLK, ENABLE);
if((USART1 == COMM_COM) || (USART6 == COMM_COM))
RCC_APB2PeriphClockCmd(COMM_COM_CLK, ENABLE);
else
RCC_APB1PeriphClockCmd(COMM_COM_CLK, ENABLE);
/* 复用配置 */
GPIO_PinAFConfig(COMM_COM_TX_GPIO_PORT, COMM_COM_TX_SOURCE, COMM_COM_TX_AF);
GPIO_PinAFConfig(COMM_COM_RX_GPIO_PORT, COMM_COM_RX_SOURCE, COMM_COM_RX_AF);
/* 引脚配置 */
GPIO_InitStructure.GPIO_Pin = COMM_COM_TX_PIN; //USART Tx
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用模式
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(COMM_COM_TX_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = COMM_COM_RX_PIN; //USART Rx
GPIO_Init(COMM_COM_RX_GPIO_PORT, &GPIO_InitStructure);
/* NVIC配置 */
NVIC_InitStructure.NVIC_IRQChannel = COMM_COM_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = COMM_COM_Priority;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* USART配置 */
USART_InitStructure.USART_BaudRate = COMM_COM_BaudRate; //波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b; //传输位数
USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位
USART_InitStructure.USART_Parity = USART_Parity_No ; //校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发功能
USART_Init(COMM_COM, &USART_InitStructure);
USART_ClearFlag(COMM_COM, USART_FLAG_RXNE | USART_FLAG_TC);
USART_ITConfig(COMM_COM, USART_IT_RXNE, ENABLE); //接收中断
USART_DMACmd(COMM_COM, USART_DMAReq_Tx, ENABLE); //使能DMA
USART_Cmd(COMM_COM, ENABLE); //使能USART
}
2.DMA配置
DMA宏定义:
/* COMM_DMA */
#define COMM_DR_ADDRESS ((uint32_t)USART2 + 0x04)
#define COMM_DMA DMA1
#define COMM_DMA_CLK RCC_AHB1Periph_DMA1
#define COMM_TX_DMA_CHANNEL DMA_Channel_4
#define COMM_TX_DMA_STREAM DMA1_Stream6
#define COMM_TX_DMA_FLAG_TCIF DMA_FLAG_TCIF6
#define COMM_TX_DMA_IRQn DMA1_Stream6_IRQn
#define COMM_TX_DMA_Priority 8 //优先级
#define COMM_TX_DMA_IRQHandler DMA1_Stream6_IRQHandler //中断函数接口(见stm32f4xx_it.c)
#define COMM_TX_DMA_IT_TCIF DMA_IT_TCIF6
DMA配置:
/************************************************
函数名称 : USART_COMM_DMA_Configuration
功 能 : 通信串口的DMA配置
参 数 : 无
返 回 值 : 无
作 者 : strongerHuang
*************************************************/
void USART_COMM_DMA_Configuration(void)
{
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
/* 使能时钟 */
RCC_AHB1PeriphClockCmd(COMM_DMA_CLK, ENABLE);
/* NVIC配置 */
NVIC_InitStructure.NVIC_IRQChannel = COMM_TX_DMA_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = COMM_TX_DMA_Priority;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* DMA配置 */
DMA_DeInit(COMM_TX_DMA_STREAM);
DMA_InitStructure.DMA_Channel = COMM_TX_DMA_CHANNEL; //DMA通道
DMA_InitStructure.DMA_PeripheralBaseAddr = COMM_DR_ADDRESS; //外设地址
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)0; //内存地址(待传入参数)
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; //传输方向
DMA_InitStructure.DMA_BufferSize = 0; //传输长度(待传入参数)
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //循环模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //优先级
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(COMM_TX_DMA_STREAM, &DMA_InitStructure);
DMA_ClearFlag(COMM_TX_DMA_STREAM, COMM_TX_DMA_FLAG_TCIF);
DMA_ITConfig(COMM_TX_DMA_STREAM, DMA_IT_TC, ENABLE); //使能DMA传输完成中断
DMA_Cmd(COMM_TX_DMA_STREAM, DISABLE); //初始化禁止
}
ⅣDMA发送UART数据包
DMA发送函数:
/************************************************
函数名称 : COMM_SendBufByDMA
功 能 : 通信串口通过DMA发送数据
参 数 : Buf ------ 数据(地址)
Length --- 数据长度(字节)
返 回 值 : 无
作 者 : strongerHuang
*************************************************/
void COMM_SendBufByDMA(uint8_t *Buf, uint16_t Length)
{
DMA_Cmd(COMM_TX_DMA_STREAM, DISABLE); //关闭DMA
//内存地址
DMA_MemoryTargetConfig(COMM_TX_DMA_STREAM, (uint32_t)Buf, DMA_Memory_0);
DMA_SetCurrDataCounter(COMM_TX_DMA_STREAM, Length); //设置DMA传输长度
DMA_Cmd(COMM_TX_DMA_STREAM, ENABLE); //使能DMA
}
细心的朋友会发现,这个发送函数其实很简单,当然,这里是使用STM32F4芯片,其他芯片也差不多,原理类似。 HAL库同样可以完成。
关于DMA发送完成中断,可根据实际情况,如果使用RTOS,一般发送数据是一个任务,这个任务会OS等待(检测)发送完成信号(即DMA发送完成中断)。
如果你觉得我分享的内容对你有帮助,在文章底部给我点一个赞,也是对我的支持和认可。
微信搜索“EmbeddDeveloper” 或者扫描下面二维码、关注,在我的底部菜单查看更多精彩内容!
长按识别二维码 关注