查看原文
其他

Nat. Commun.:电流密度对Li|Li6PS5Cl界面形成的影响

熊JOJO 新威 2022-12-13


01


导读


包含无机固态电解质的固态电池(SSB)技术正迅速成为电动汽车(EV)领域的一个有前景的发展方向,主要是因为它能够应用超高容量的锂金属作为负极,从而提高电池的重量和体积能量密度,且具有热稳定性,也适合快速充电。然而,锂金属的应用充满了问题,其中就包括锂金属负极和固态电解质的界面问题,如果能解决这个问题,我们又朝“电动时代”迈了一大步。


02


成果背景


尽管具有一定的电化学稳定性窗口,但Li6PS5Cl(LPSCl)电解质在与金属Li接触时会形成动力学稳定的固态电解质界面(SEI)。一方面,这种SEI的形成对于防止固态电解质(SE)进一步分解是有利的,另一方面,它对SSB的电化学性能也有负面影响,因为它显著增加了界面阻抗。对界面演化现象的研究可以为界面工程提供指导作用,从而实现在相对高的电流密度下也能保持稳定。最近,一种使用电化学脉冲的技术可以通过Li-SE界面改性来降低锂金属和氧化物SE之间的界面阻抗(ACS Energy Letts., 2021, 6, 3669–3675)。

但仍然缺少对界面演化过程影响的系统研究,尤其是针对Li-SE界面。来自牛津大学的Mauro Pasta团队使用原位X射线光电子能谱(XPS)技术研究了在电化学沉积过程中锂金属和LPSCl硫化物固态电解质之间形成与界面电流密度的关系。通过结合“无锂”负极的电化学阻抗谱(EIS)分析,进一步研究了SEI形成动力学和组成对Li-SE界面阻抗的影响。这些发现对开发稳定界面极具启发意义,从而能够指导提高在高电流密度下的锂沉积和剥离效率。

这项成果于2022年11月24日以题为“Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interface”的论文在线发表在Nature Communications上。


03
关键创新

使用电子束在Li6PS5Cl固态电解质颗粒表面沉积锂时,进行了X射线光电子能谱(XPS)测试,突出了沉积锂时电流密度对均匀且导离子(即富含Li3P)SEI的演变的作用,该SEI能够降低界面电阻,可通过电化学阻抗谱测试验证。


04


核心内容解读


选择无锂负极配置是研究SEI的初始形成和随后演变的最合适和最相关的系统,但必须使用原位技术来充分表征系统。上述原位XPS方法(如1a所示)来源于Wood等人先前开发和详细描述的方法以及其他相关工作(Nat. Commun., 2018, 9, 1–10等),这里还将此称为“虚拟电沉积”(VEP)过程。在这项研究中,调整电子束电流(EBC)以调制入射在SE表面的电子通量,从而调整虚拟电沉积电流。为了观察由于界面演变引起的电化学响应,在固态电解质电池中使用了一个等效的装置,以便使用阻抗和电势分析研究不锈钢(SS)集流体(CC)上的锂沉积层各种施加的电流密度(1b)。

【图1】XPS中沉积锂的示意图和具有无锂负极的固态电解质电池。a示意图描绘了原位XPS虚拟电沉积技术,其中电子束电流可以在从固态电解质(SE)表面获取光电子能谱的同时进行调制,以及b在无锂负极配置中使用Li6PS5Cl SE进行电化学设置以研究阻抗和无锂电极(不锈钢集流体-CC)沉积过程中的电极电势演变。无锂电极用作对电极CE)和Li-In层作为锂的来源,在此设置中用作工作电极WE)。电极和SE组装在由PEEK(聚醚醚酮)制成的模具中


1)XPS和SEI演化中的虚拟电沉积

固态LPSCl颗粒首先在充满Ar的手套箱内冷压,其中附着薄锂金属和SS箔如1a所示的CC。将EBC设置为30 μA,在约18分钟的时间内,以1分钟的间隔获取Li 1s、S 2p、P 2p和Cl 2p跃迁的光电子能谱。2a(左图)显示了随着虚拟电沉积的进行,Li 1s光谱的演变。考虑到电荷中和电子束的尺寸(对于BaO电子中和器,电子束的直径为φe-≈5 mm),施加到样品上的等效电流密度(jeq)定义为jeq=EBC/as,as是表面积(as=ae−beam)。因此,沉积锂量可以根据jeq、暴露时间(texp进行估算,并以通过的等效面积电荷qA表示,例如qA=jeqtexpμAh cm−2

【图2】XPS研究SE表面虚拟电沉积过程中的SEI演变。LPSCl表面虚拟电沉积过程中核心级XPS光谱的演变,施加的EBC30 μA(或~0.15 mA cm−2,左图)、10 μA(或~0.05 mA cm−2,中图)2.5 μA(或~0.01 mA cm−2,右图),对于a Li 1sc S 2pe P 2p跃迁,作为通过的电荷qA(μAh cm−2的函数。对不同电流密度下通过的不同电荷量绘制的XPS光谱的量化,描绘了b金属Li(Li0)在Li 1sd Li2SS 2pf Li3P iP 2p的组成分数。对于在高电流密度下通过的少量电荷,较大比例的Li0(图b)和Li3P(图f中的绿色区域)表明界面反应动力学更快

在30 μA EBC(jeq≈0.15 mA cm−2)时,通过对2a中Li 1s光谱的定性研究,推断金属锂层的形成和生长发生在qA<10 μAh cm−2和高电流密度(jeq≥0.1 mA cm−2)时,而在低电流时密度,SEI继续生长。

为了定量解释这一观察结果,将Li 1s光谱进行一定拟合,比较Li 1s光谱中金属Li的比例,及其作为传递的等效电荷函数的演变,为高电流密度下金属Li层的加速出现提供了定量证据(2b)。得出结论,Li在高电流密度下比在低电流密度下更快地沉积出金属层。

虽然Li 1s光谱提供了对Li沉积行为的深入了解,但S 2p和P 2p光谱揭示了SEI化学的演变。在S 2p信号的情况下,如2c所示,随着沉积锂量的增加,Li2S的双峰特征进一步发展。研究图2d中的不同EBC处测试的光谱量化的成分,LPSCl表面还原为Li2S在高jeq下以明显更快的速率发生。即使对于通过的低当量电荷。相比之下,在jeq≤0.05 mA cm−2时,只有大约70%的S 2p光谱由还原的硫化物组成。这表明在低电流密度下,反应物物种(此处为沉积锂)的各种还原反应驱动的反应动力学相对缓慢。

同时,P-S四面体中的磷通过形成多个部分还原物质,通过与沉积层Li反应,通过间接的途径还原为Li3P,通常统称为LixP。比较P 2p光谱中的演变揭示了迅速降低到低B.E.双峰特征(2e)。继续沉积最终也会在低电流密度下形成完全还原的Li3P,同时伴随着整体P 2p光谱强度的大幅降低,表明沉积金属Li的积累。这些观察结果表明,即使在低等效电荷通过时,在高电流密度下沉积锂的早期阶段也会形成富含Li3P的SEI。Li3P的分数被量化为传递的等效电荷的函数,特别是当qA<10 μAh cm−2时,2f提供了支持该结论的证据。在2c2e可以看出,对于通过的类似等效电荷,与原始LPSCl成分有关的XPS信号在高jeq下强度衰减更快。

通过在大采样表面上采集的XPS光谱,可以推断在高电流密度下沉积锂所形成的SEI层相对更均匀和均匀。但是随着锂沉积的增加,P 2p光发射信号的抑制(2e)确实会导致较低的信噪比。因此,组分拟合后续错误将拟合组分(尤其是S和P)的比较限制为低等效电荷状态(qA<10 μAh cm22d2f中的高亮区域)。

【图3】在电流密度为0.01–2.5 mA cm−2时,无锂负极电池中的EIS测试。经过类似的等效电荷后,奈奎斯特曲线(原始数据为符号,曲线拟合为线)描述了无锂半电池SS|LPSCl|LiIna J2.5=2.5 mA cm−2,b J0.5=0.5 mA cm−2,c J0.05=0.05 mA cm−2d J0.01=0.01 mA cm−2,沉积时电化学阻抗的演变。阻抗曲线低频尾部的变化可以与界面演化的变化程度相关联。


2)无锂负极电池中的电化学沉积

为了研究电流密度相关的界面演化对系统电化学性能的影响,组装并测试了具有“无锂”负极配置的SS|SE|LiIn电池,如1b所示。在这里,LiIn合金(Li0.25In0.75)被用作Li的来源。复制了XPS中的虚拟电沉积实验,通过施加不同的电流密度,在负极侧的SS离子对电极上沉积Li期间研究了电池阻抗的演变。与前面讨论的XPS光谱一样,奈奎斯特图也显示了等量电荷通过时的显著差异,这取决于施加的电流密度(3a-d)。与电池的体阻抗相对应的实轴高频截距预计会随着锂逐渐沉积到SS集流体上而增加。这可以归因于SS箔和SE之间的接触逐渐改善。而在相对较低的电流密度下(3cd),阻抗曲线的低频尾部显示Re(Z)(实际阻抗的分量,或Z')随着锂沉积的进行,在更高的电流密度下(3ab),对于等量的Li沉积在SS集流体上,Re(Z)的相同低频分量更快地收敛到稳定值,这种效果在最高测试电流密度J2.5时最为突出。

界面阻抗的电流密度成为了理解这种趋势的根本因素,将获得的奈奎斯特图拟合到4a中示意性描绘的等效电路。SEI和CT贡献的组合电阻图(4b)表明,在低电流密度下,界面电阻逐渐达到最小值。但对于在明显更高的电流密下进行的Li沉积,界面电阻几乎在Li开始沉积时立即达到相同的最小电阻。在超过50 μAh cm2的电荷通过时,阻抗演变的差异最为显著,影响会像预期的那样减弱,而在两种情况下沉积都会继续形成金属锂层。因此,界面电阻的快速下降,结合完全还原的反应产物(特别是Li3P)的出现以及XPS分析中金属锂的更大比例的存在,对于在高电流密度下沉积的锂,所有这些都在电沉积初始阶段的~10 μAh cm−2电荷范围内观察到,表明形成了更均匀SEI层,(4c)。

【图4】EIS光谱的解释。a 用于拟合EIS数据的等效电路以及描述体积(RB)、晶界(RGB)、SEIRSEI)和电荷转移(RCT)过程的阻抗贡献的示意。b 界面电阻Rint(RSEI+RCT的变化,来自拟合的EIS数据,作为在电流密度J2.5=2.5mA cm−2J0.5=0.5 mA cm−2,J0.05=0.05 mA cm−2J0.01=0.01 mA cm−2下沉积锂期间通过的电荷量的函数。c J2.5JHigh)和J0.01JLow)处,SEI形成和Li沉积作为施加电流密度的函数的可能机制的示意图。


05


成果启示


在此报告了通过XPS研究使用原位虚拟电化学沉积方法引入的Li金属与Li6PS5Cl SE接触时形成的电流密度介导的界面演化过程,这表明反应动力学在这些过程中起着重要作用。在高电流密度下,在沉积的初始阶段,发现该界面富含Li3P,这是Li6PS5Cl的完全还原分解产物。通过在SE表面沉积金属Li的出现,以及在相对较低的等效电荷通过时原始LPSCl表面的光谱信号的完全抑制证明,高电流密度下的界面更均匀。通过EIS测试结合XPS光谱分析界面阻抗进一步证实了这种说法。此外,在较高电流密度下形成的SEI由Li+离子导电Li3P组成,而且更均匀。可以用其来设计电极-电解质界面,并开发充放电协议,特别是在无锂SSB中。


06


参考文献


Narayanan, S., Ulissi, U., Gibson, J.S. et al. Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interface. Nat Commun 13, 7237 (2022).

https://doi.org/10.1038/s41467-022-34855-9








声明:本文仅代表作者观点,如有不科学之处,请在下方留言指正!文章系作者授权新威公众号发布,转载及相关事宜请联系小威(微信号:xinweiyanxuan)。

“阅读原文”一起来充电吧!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存